
Quantifying Program Complexity and Comprehension

Quantifying Program Complexity and ComprehensionQuantifying Program Complexity and Comprehension
Michael Hansen, Andrew Lumsdaine, Rob Goldstone, Raquel Hill, Chen YuMichael Hansen, Andrew Lumsdaine, Rob Goldstone, Raquel Hill, Chen Yu

Dissertation ProposalDissertation Proposal
Indiana University, November 22 2013Indiana University, November 22 2013

Big QuestionBig Question

How do we quantify the psychological or cognitive complexity of a program?

MotivationMotivation

Explicit psychological theory of programming
Automated identification of error-prone or potentially confusing code
More objective design decisions for tools, programs, libraries, and languages
Constrain code generators to produce less complex programs

Medium-sized QuestionsMedium-sized Questions

What is cognitive complexity in the context of programming?
Which aspects of a program/programmer should affect this cognitive complexity?
How might we quantify a program's cognitive complexity?
Knowing a program's cognitive complexity, what could we predict?

Cognitive Complexity in the Context of ProgrammingCognitive Complexity in the Context of Programming
Software complexity is "a measure of resources expended by a system [human or other]
while interacting with a piece of software to perform a given task."

— Basili, 1980

One feature which all of these [theoretical] approaches have in common is that they
begin with certain characteristics of the software and attempt to determine what
effect they might have on the difficulty of the various programmer tasks.

A more useful approach would be first to analyze the processes involved in
programmer tasks, as well as the parameters which govern the effort involved in those
processes. From this point one can deduce, or at least make informed guesses, about
which code characteristics will affect those parameters.

— Cant et. al, 1995

Of Models and MetricsOf Models and Metrics
Cognitive complexity is...Cognitive complexity is...

Function of source code (complexity metrics)

 is bad

Poor support for user activities (Cognitive Dimensions of Notation)
Resistance to change, hidden dependencies, etc.
Programming languages are used to try out ideas

Unfamiliar schemas/implicit rule violations (Détienne/Soloway)
Explains novice/expert differences
Don't , IF/THEN rules

Properties of a cognitive model trace (Cognitive Complexity Metric, Mr. Bits)
Cognitive resource constraints + effects of notation
Task time, eye movement metrics, contents of memory, etc.

= f(code)c ⃗
>ci thresholdi

X

Thesis ContributionsThesis Contributions

Thorough review of relevant literature in software complexity and the psychology of programming1.
Analysis of code/cognitive/demographic factors affecting programmer output predictions2.
Methodology and Python library for analyzing programmers' responses and eye movements3.
Analysis of collected eye movement data4.
Design, prototype, and evaluation of quantitative process model (output prediction task)5.

Presentation OverviewPresentation Overview

Measuring Software Complexity ()

Kinds of complexity

1.

Psychology of Programming ()

Cognitive models of program comprehension

2.

Experiments ()

Aspects of code/programmer that affect comprehension

3.

Modeling: Mr. Bits ()

Quantifying resource expenditure

4.

Conclusion and Research Timeline ()

Finish by Spring 2015 at the latest

5. link

link

link

link

link

1. Measuring Software Complexity1. Measuring Software Complexity

Completed work
Literature review
Complexity vs. reuse experiment

Proposed work
Cohesive write-up
Readability vs. complexity (Buse)

Kinds of Software ComplexityKinds of Software Complexity

Problem/computational complexity
Complexity of underlying problem or
domain
Usually considered fixed

Representational complexity
Cognitive/psychological complexity

Computational ComplexityComputational Complexity

Bounds on computing resources as a function
of input size

Kolmogorov ComplexityKolmogorov Complexity

Computational resources needed to specify an
object
Size of smallest program in language
Not computable in the general case

O(c) < O(n) < O() < O()nc cn

L

Kinds of Software ComplexityKinds of Software Complexity

Problem/computational complexity
Representational complexity

Physical form of the program
Language, formatting, naming, etc.
Problem representation

Cognitive/psychological complexity

Source Code MetricsSource Code Metrics

Syntactic - Size/Spatial/Graph/Counter-Factual
Lines of Code
Function Complexity
Inheritance Depth
Minimum Description Length

Readability
Line length
Number of identifiers/identifier
length
Indentiation/blank lines

Concepts and beacons (stack, queue, etc.)
Formal Concept Analysis (lattice)
Concept Identification (Biggerstaff)

Weyuker's Properties (1988)Weyuker's Properties (1988)

Proposed properties of syntactic software complexity measures
 is the complexity of program

Property Description

Not all programs should have the same
complexity

The set of programs whose complexity
is is finite

Some programs share the same
complexity

Functional equivalence does not imply
complexity equivalence

Concatenation cannot decrease
complexity

Context matters for complexity after
concatenation

The order of statements matters

Identifier and operator names do not
matter

Concatenated programs may be more
complex than the sum of their parts

|P | P

(∃P ,Q)(|P | ≠ |Q|)

(∀c)({P | |P | = c} is finite)
c

(∃P ,Q)(|P | = |Q| and P ≠ Q)

(∃P ,Q)(P ≡ Q and |P | ≠ |Q|)

(∀P ,Q)(|P | ≤ |P ;Q| and |Q| ≤ |P ;Q|)

(∃P ,Q,R)(|P | = |Q| and |P ;R| ≠ |Q;R|)

(∃P)(|P | ≠ |permute(P)|)

(∀P)(|P | = |rename(P)|)

(∃P ,Q)(|P | + |Q| < |P ;Q|)

Kinds of Software ComplexityKinds of Software Complexity

Problem/computational complexity
Representational complexity
Cognitive/psychological complexity

Influenced by problem,
representational complexity
Function of programmer experience,
mental resource constraints
Task dependent: reuse vs. debugging
vs. modification

Qualitative Models Models

Integrated Metamodel (von Mayrhauser, 1995)
Program/situation models +
top-down planning

Cognitive Dimensions of Notation (Blackwell
and Green, 1995)

Programming languages are used to
try out ideas
Hidden dependencies, viscosity,
consistency, ...

Rules of Discourse (Soloway and Ehrlich, 1984)
Unwritten rules internalized by
experts
Expectations that drive
understanding process

Kinds of Software ComplexityKinds of Software Complexity

Problem/computational complexity
Representational complexity
Cognitive/psychological complexity

Influenced by problem,
representational complexity
Function of programmer experience,
mental resource constraints
Task dependent: reuse vs. debugging
vs. modification

Quantitative Models Models

Cognitive Weights (Chhabra, 2011; Shao et. al,
2003)

Assign weights to syntactic &
semantic elements
Complexity =

Cognitive Complexity Metric (Cant et. al, 1995)
"Process" model based on chunking &
tracing
Terms for chunk size, control
structures, boolean expressions, etc.
Complexity =

Mr. Bits
Embodied process model based on
eye movements, memory, spatial
reasoning, inference
Task is to predict printed output
Complexity = time spent, steps taken,
representation, etc.

f(weights)

f(chunking) + g(tracing)

Readability vs. ComplexityReadability vs. Complexity

Readability is "accidental" while complexity is "essential"
Problem/computational complexity

Readability is local, line-by-line (Buse, 2010)
Number of identifiers
Line length
Indentation

Software Readability Ease Score (SRES)
Like Flesch score (FRES)
Tokens = syllables, statements = words, units = sentences

2. Psychology of Programming2. Psychology of Programming

Completed work
Literature review
Onward! workshop paper (cognitive architectures)

Proposed work
Review literature on text understanding models (Kintsch, 1978)
Consider recent eye-tracking studies of programming

Many claims are made for the efficacy and utility of new approaches to software
engineering - structured methodologies, new programming paradigms, new tools, and
so on. Evidence to support such claims is thin and such evidence, as there is, is largely
anecdotal. Of proper scientific evidence there is remarkably little.

Furthermore, such as there is can be described as "black box", that is, it demonstrates a
correlation between the use of certain technique and an improvement in some aspect
of the development. It does not demonstrate how the technique achieves the observed
effect.

— Software Design - Cognitive Aspects (Détienne, 2001)

Periods of ResearchPeriods of Research
Early: 1960-1980Early: 1960-1980

Importing of experimental techniques to CS
Correlations between task performance and PL/human factors
Novice participants on toy programs
Contradictory and confusing results

Later: 1980-PresentLater: 1980-Present

Use of cognitive models to explain internal processes
Verbal reports, real-time code changes, gaze patterns, etc.
Experienced/professional participants on real-world programs
Models are largely qualitative

Early Study ExampleEarly Study Example

Effect of variable naming on code understanding
No effect for simple programs, positive effect for complex programs
Experienced programmers recognize schemas (Soloway and Ehrlich, 1984)

Important FactorsImportant Factors

Knowledge
Experienced programmers represent at multiple levels of abstraction: syntactic, semantic, and
schematic
Conventions and common programming plans allow experts to quickly infer intent and avoid
unnecessary details

Strategies
Experienced programmers use more design strategies (top-down, bottomup, breadth-first,
depth-first)
Current strategy is chosen based on factors like familiarity, problem domain, and available
language features

Task
Current task or goal will change which kinds of program knowledge and reading strategies are
advantageous
Experienced programmers read and remember code differently depending on whether they
intend to edit, debug, or reuse it

Environment
Programmers use their tools to off-load mental work and to build up representations of the
current problem state
The benefits of specific tools, such as program visualization, also depend on programming
expertise

Models of Text UnderstandingModels of Text Understanding

Structural
Understanding = constructing a network of relations
Top-down identification of structural schemas
Bottom-up construction of propositional network
Stages

Morpho-syntactic decoding1.
Sentence parsing and proposition construction2.
Connecting propositions (micro and macro structure)3.

Mental Model
Understanding = constructing a representation of the situation
Levels of representation

Surface representation1.
Propositional2.
Situational model (optional)3.

Situational model
Content-rich (vs. structural)
Invocation of knowledge schemas (including domain knowledge)

Cognitive Models of ProgrammingCognitive Models of Programming

Experimental ApproachesExperimental Approaches

Comprehension tests - read code and answer questions
Questions about control flow are easier than data flow

Code recall - reproduce code after reading
Experts more likely to recall prototypical schema values (instead of for iterator)

Debugging - look for errors and fix
Review time linked to success

Completion - fill in the blank
Experts do better than novices when rules of discourse are not violated

Create - write a program according to some spec
Experts are top-down for known problems, bottom-up otherwise

[A cognitive model] seeks to explain basic mental processes and their interactions;
processes such as perceiving, learning, remembering, problem solving, and decision
making.

— Busemeyer and Diederich, 2010

i j

Tracz's Human Information Processing System (HIPS)Tracz's Human Information Processing System (HIPS)

Image from Tracz, 1979

von Mayrhauser's Integrated Metamodelvon Mayrhauser's Integrated Metamodel

Image from von Mayrhauser and Vans, 1995

Douce's Stores Model of Code CognitionDouce's Stores Model of Code Cognition

Image from Douce, 2008

Douce's Stores Model of Code Cognition + Mr. BitsDouce's Stores Model of Code Cognition + Mr. Bits

IM = imaginal buffer, DM = declarative memory (ACT-R)
BMs = behavior models (productions + state)

Base image from Douce, 2008

Cant's Cognitive Complexity Metric (CCM)Cant's Cognitive Complexity Metric (CCM)

Immediate chunk complexity ()
Sub-chunk complexity ()

Tracing difficulty ()

Ri
Cj

Tj

CCM Terms (Chunking)CCM Terms (Chunking)

Term Description

Speed of recall or review (familiarity)

Chunk size

Type of control structure in which chunk is embedded

Difficulty of understanding complex Boolean or other
expressions

Recognizability of chunk

Effects of visual structure

Disruptions caused by dependencies

R = (+ + + + +)RF RS RC RE RR RV RD

RF

RS

RC

RE

RR

RV

RD

CCM Terms (Tracing)CCM Terms (Tracing)

Term Description

Dependency familiarity

Localization

Ambiguity

Spatial distance

Level of cueing

T = (+ + +)TF TL TA TS TC

TF

TL

TA

TS

TC

Ideal observer model of text reading based on
EZ-Reader
Single, long line of text
Make the saccade that minimizes uncertainty

RetinaRetina

Rectangular, discrete fovea + para-fovea
Only characters/whitespace distinguishable in
para-fovea

Eye Movement ModelEye Movement Model

Gaussian variability in saccade length
Model is aware of noise

LexiconLexicon

Words and relative frequencies

Image from Legge et. al, 2002

Mr. Chips (Legge, 2002)Mr. Chips (Legge, 2002)

A Model of Human Behavior?A Model of Human Behavior?

Mr. Bits
Model of human programmer?
Model of task with resource constraints

Sensor (eye), DM, manual

...Mr. Chips is not proposed as a model of human behavior, and is not falsifiable by
human reading data. Its value in studying human reading should be judged on its claim
to optimality (see Chips97), the reasonableness of its assumed informational
constraints, and the insights it generates into human reading.
— Legge et. al, 2002

3a. Experiment 1: Output Prediction3a. Experiment 1: Output Prediction

Completed work
Data collection from Mechanical Turk and Bloomington (162 participants)
arXiv paper with response data analysis

Proposed work
Journal article with additional complexity/performance metrics

The eyeCode ExperimentThe eyeCode Experiment
Research QuestionsResearch Questions

How are programmers affected by programs that violate their expectations, and does this vary with
expertise?

1.

How are programmers influenced by physical characteristics of notation, and does this vary with
expertise?

2.

Can code complexity metrics and programmer demographics be used to predict task performance?3.

TaskTask

Predict printed output of 10 short Python
programs
2-3 versions of 10 programs, randomly
assigned
Pre/post surveys
No feedback, syntax highlighting

ParticipantsParticipants

162 total participants
29 Bloomington ($10)
130 Mechanical Turk ($0.75)
3 E-mail

1,602 trials
18 trials discarded

Demographics (All Participants)Demographics (All Participants)

Demographics (Bloomington Participants)Demographics (Bloomington Participants)

Younger participants, more experienced programmers

Home ScreenHome Screen

Program order is randomized

Trial ScreenTrial Screen

Images instead of text, no feedback

Anatomy of a TrialAnatomy of a Trial

Response proportion
Keystroke coefficient = 4/2 = 2
Keystroke count = 4

True output characters = 2
Response corrections = 1
Grade = 10 (perfect)

≈ 0.5

between - filter two lists, intersection
functions - between/common in
functions (24 lines)
inline - no functions (19 lines)

counting - simple for loop with bug
nospace - no blank lines in loop body
(3 lines)
twospaces - 2 blank lines in loop
body (5 lines)

funcall - simple function call with different
values

nospace - calls on 1 line, no spaces (4
lines)
space - calls on 1 line, spaced out (4
lines)
vars - calls on 3 lines, different vars
(7 lines)

overload - overloaded + operator (number
strings)

multmixed - numeric *, string + (11
lines)
plusmixed - numeric +, string + (11
lines)
strings - string + (11 lines)

partition - partition list of numbers
balanced - odd number of items (5
lines)
unbalanced - even number of items
(5 lines)
unbalanced_pivot - even number
of items, pivot var (6 lines)

Programs (1/2)Programs (1/2)
10 categories, 2-3 versions each (25 total)10 categories, 2-3 versions each (25 total)

initvar - summation and factorial
bothbad - bug in both (9 lines)
good - no bugs (9 lines)
onebad - bug in summation (9 lines)

order - 3 simple functions called
inorder - call order = definition
order (14 lines)
shuffled - call order definition
order (14 lines)

rectangle - compute area of 2 rectangles
basic - x,y,w,h in separate vars, area()
in function (18 lines)
class - x,y,w,h,area() in class (21
lines)
tuples - x,y,w,h in tuples, area() in
function (14 lines)

scope - function calls with no effect
diffname - local/global var have
same name (12 lines)
samename - local/global var have
different name (12 lines)

whitespace - simple linear equations
linedup - code is aligned on
operators (14 lines)
zigzag - code is not aligned (14
lines)

Programs (2/2)Programs (2/2)
10 categories, 2-3 versions each (25 total)10 categories, 2-3 versions each (25 total)

≠

Code Complexity MetricsCode Complexity Metrics

code_lines - number of lines in the program (includes blank lines)
Correlated with (0.46) and (0.78)

cyclo_comp - McCabe's Cyclomatic Complexity

 = edges
 = nodes
 = connected components

Upper bound for branch coverage
Lower bound for paths

hal_effort - Halstead's Effort
 = unique operators, = unique operand
 = total operators, = total operands

Program Length:
Program Vocabulary:
Volume:

Difficulty:

Effort:

CC E

CC = E −N + 2P
E
N
P

n1 n2
N1 N2

N = +N1 N2
n = +n1 n2

V = N nlog2

D = ×n1

2
N2

n2

E = D× V

code_chars code_lines cyclo_comp hal_effort output_chars output_lines

base version

between
functions 496 24 7 94192 33 3

inline 365 19 7 45596 33 3

counting
nospace 77 3 2 738 116 8

twospaces 81 5 2 738 116 8

funcall

nospace 50 4 2 937 3 1

space 54 4 2 937 3 1

vars 72 7 2 1735 3 1

initvar

bothbad 103 9 3 3212 5 2

good 103 9 3 3212 6 2

onebad 103 9 3 2866 6 2

order
inorder 137 14 4 8372 6 1

shuffled 137 14 4 8372 6 1

code_chars code_lines cyclo_comp hal_effort output_chars output_lines

base version

initvar

bothbad 103 9 3 3212 5 2

good 103 9 3 3212 6 2

onebad 103 9 3 2866 6 2

overload

multmixed 78 11 1 2340 9 3

plusmixed 78 11 1 3428 7 3

strings 98 11 1 3428 21 3

partition

balanced 105 5 4 2896 26 4

unbalanced 102 5 4 2382 19 3

unbalanced_pivot 120 6 4 2707 19 3

rectangle

basic 293 18 2 18801 7 2

class 421 21 5 43203 7 2

tuples 277 14 2 15627 7 2

scope
diffname 144 12 3 2779 2 1

samename 156 12 3 2413 2 1

whitespace
linedup 275 14 1 6480 13 3

zigzag 259 14 1 6480 13 3

Performance MetricsPerformance Metrics

Grade
A grade of 7 or higher (out of 10) is correct
More complex programs should result in a lower grade

Trial duration
Time from start to finish (reading + responding)
More complex programs should take longer to read and respond to (higher duration)

Response proportion
Time spent responding / trial duration
More complex programs should require more reading time up front (higher proportion)

Keystroke coefficient
Number of actual keystrokes / required keystrokes
More complex programs should require more keystrokes due to mistakes/corrections (higher
coefficient)

Response Corrections
Number of decreases in response size
More complex programs should require more corrections (higher number)

True OutputTrue Output Correct (7)Correct (7)

Common Error (4)Common Error (4) Incorrect (0)Incorrect (0)

GradesGrades

0 to 10 (perfect)
 correct modulo formatting≥ 7

print "1" + "2"
print 4 * 3

12
12

"12",12

3
12

barney

GradesGrades

0 to 10 (perfect)
 correct modulo formatting

Median trial grade = 10
Median experiment grade = 81

≥ 7

Grade Distributions by ProgramGrade Distributions by Program

scope, counting, and between were hardest

scope - samenamescope - samename scope - diffnamescope - diffname

def add_1(added):
 added = added + 1

def twice(added):
 added = added * 2

added = 4
add_1(added)
twice(added)
add_1(added)
twice(added)
print added

def add_1(num):
 num = num + 1

def twice(num):
 num = num * 2

added = 4
add_1(added)
twice(added)
add_1(added)
twice(added)
print added

Trial DurationTrial Duration

45 minutes for entire experiment
No time limit on individual trials

Median trial duration: 55 sec
Median experiment duration: 773 sec (12.9 min)

Duration Distributions by ProgramDuration Distributions by Program

Log scale, strong positive correlation with lines of code (0.48)

Response Proportions by ProgramResponse Proportions by Program

Time spent responding / trial time

between - functionsbetween - functions between - inlinebetween - inline

def between(numbers, low, high):
 winners = []
 for num in numbers:
 if (low < num) and (num < high):
 winners.append(num)
 return winners

def common(list1, list2):
 winners = []
 for item1 in list1:
 if item1 in list2:
 winners.append(item1)
 return winners

x = [2, 8, 7, 9, -5, 0, 2]
x_btwn = between(x, 2, 10)
print x_btwn

y = [1, -3, 10, 0, 8, 9, 1]
y_btwn = between(y, -2, 9)
print y_btwn

xy_common = common(x, y)
print xy_common

x = [2, 8, 7, 9, -5, 0, 2]
x_between = []
for x_i in x:
 if (2 < x_i) and (x_i < 10):
 x_between.append(x_i)
print x_between

y = [1, -3, 10, 0, 8, 9, 1]
y_between = []
for y_i in y:
 if (-2 < y_i) and (y_i < 9):
 y_between.append(y_i)
print y_between

xy_common = []
for x_i in x:
 if x_i in y:
 xy_common.append(x_i)
print xy_common

Keystroke CoefficientKeystroke Coefficient

Number of keystrokes / characters in true output
 is less efficient> 1

counting - nospacecounting - nospace counting - twospacescounting - twospaces

for i in [1, 2, 3, 4]:
 print "The count is", i
 print "Done counting"

for i in [1, 2, 3, 4]:
 print "The count is", i

 print "Done counting"

Response CorrectionsResponse Corrections

Number of decreases in response size
Higher number means more corrections

ResultsResults

How are programmers affected by programs that violate their expectations, and does this vary with
expertise?

More response errors (scope, between)
Varies with expertise sometimes (scope - Python)

1.

How are programmers influenced by physical characteristics of notation, and does this vary with
expertise?

More response errors, longer trials (counting, overload)
No significant effect of expertise

2.

Can code complexity metrics and programmer demographics be used to predict task performance?

Yes, significantly better than chance (binary metrics)
Cyclomatic complexity () + years of Python experience () best for correct grade
Code lines () + years of programming experience () best for trial duration

3.

↓ ↑
↑ ↓

3b. Experiment 2: Eye Tracking3b. Experiment 2: Eye Tracking

Completed work
Data collection from Bloomington (29 participants, 5.5 hours of video)
Videos and preliminary analysis available via web
Koli Calling workshop paper with automated coding
Alpha version of eyeCode Python library

Proposed work
Follow-up Koli Calling publications (automated coding, visualization - abstract rendering?)
Paper with fixation metric and scanpath comparisons
Release stable eyeCode library, data, and complete analyses

Tobii TX300 - 300Hz
23 in. screen, 1920x1080
Free-standing (no chinrest)
Tobii Studio 2.2

Fixations from single trial
between_functions program
Radii proportional to duration

Eye-Tracking HardwareEye-Tracking Hardware

UncorrectedUncorrected CorrectedCorrected

Data Processing and CorrectionData Processing and Correction

Tobii Studio default fixation filter
Fixations were manually correct by experiment (vertical shifts only)

Line-based AOIsLine-based AOIs

Indentation is part of line AOI

Syntax-based AOIsSyntax-based AOIs

Current data is too noisy to use syntax AOIs

Time Spent on Each LineTime Spent on Each Line

Proportions of total fixation times (all participants)

Median grade = 10

Median grade = 4

Timeline from Fixations and Areas of InterestTimeline from Fixations and Areas of Interest

By line and output box

Mapping Fixations to Areas of InterestMapping Fixations to Areas of Interest

Multiple layers of AOIs, disjoint intra-layer
In each layer, fixation 0 or 1 AOI
Circle around fixation point, AOI with largest area overlap

→

Scanpath ComparisonsScanpath Comparisons

Levenshtein distance (string edit distance)
Needleman-Wunsch (DNA sequence matching)

Correct TrialsCorrect Trials Incorrect TrialsIncorrect Trials

AOI Transition MatrixAOI Transition Matrix

1
2
3
4
5

for i in [1, 2, 3, 4]:
 print "The count is", i

 print "Done counting"

Data importing/cleaning
Fixations AOIs
Scanpath construction/comparison
Visualization, automated coding
Mr. Bits models

The eyeCode LibraryThe eyeCode Library

→

Load library and experiment data
from eyecode import data, aoi
fixes = data.hansen_2012.all_fixations()
aois = data.hansen_2012.areas_of_interest()

Filter down to a single trial
trial_id = 17
t_fixes = fixes[fixes.trial_id == trial_id]
t_aois = aois[aois.trial_id == trial_id]

Compute scanpath and plot top 10 tri-grams
line_scan = aoi.scanpath_from_fixations(
 t_fixes, repeats=False,
 aoi_names = { "line": [] })
tri_grams = nltk.util.ngrams(line_scan, 3)
pandas.Series(tri_grams)\
 .value_counts()[:10].plot(kind="barh")

between - functionsbetween - functions

1 def between(numbers, low, high):
2 winners = []
3 for num in numbers:
4 if (low < num) and (num < high):
5 winners.append(num)
6 return winners
7
8 def common(list1, list2):
9 winners = []
10 for item1 in list1:
11 if item1 in list2:
12 winners.append(item1)
13 return winners
14
15 x = [2, 8, 7, 9, -5, 0, 2]
16 x_btwn = between(x, 2, 10)
17 print x_btwn
18
19 y = [1, -3, 10, 0, 8, 9, 1]
20 y_btwn = between(y, -2, 9)
21 print y_btwn
22
23 xy_common = common(x, y)
24 print xy_common

Rolling Metrics (Koli Calling)Rolling Metrics (Koli Calling)

Metrics computed over a 4 second rolling window

ResultsResults
Analysis is on-goingAnalysis is on-going

Mean fixation durations are about 50ms above normal reading
Connections between performance and fixations (counting, overload)
About 75% of code lines are fixated in the first 30 sec (Uwano et. al, 2006)
Edit-distance scanpaths are on average 75-80% different

3c. Experiment 3: Follow-Up3c. Experiment 3: Follow-Up

Completed Work
Experiment design and software
New programs

Proposed Work
Run new Mechanical Turk experiment (Software Carpetry students?)

Updated Design/InterfaceUpdated Design/Interface

Only two versions of each program, same output
Time limit for individual trials
Record start/end timestamps in Javascript
Discourage copy/paste in output box

Other IdeasOther Ideas

Add tabs to separate helper functions and main code?
Ask confidence level after each trial?

New and Updated ProgramsNew and Updated Programs

between
Focus on pulled-out vs. inline functionality

counting
Use something besides "Done counting"

scope
Return a value in one version

order and whitespace
Larger changes in notation

Variable names without implicit order
red, green, blue instead of a, b, c

Drop funcall and partition
Nothing significant from previous experiment

countingcounting

for i in [1, 2, 3, 4]:
 print "The count is", i

 print "Done counting"

for i in [1, 2, 3, 4]:
 print "The count is", i

 print "Today is Friday."

orderorder

def green(x):
 return x + 4

def blue(x):
 return x * 2

def orange(x):
 return green(x) + blue(x)

def purple(x):
 return orange(x) * blue(x)

x = 1
a = green(x)
b = blue(x)
c = orange(x)
d = purple(x)
print a, b, c, d

def purple(x):
 return orange(x) * blue(x)

def blue(x):
 return x * 2

def orange(x):
 return green(x) + blue(x)

def green(x):
 return x + 4

x = 1
a = green(x)
b = blue(x)
c = orange(x)
d = purple(x)
print a, b, c, d

overloadoverload

a = 4
b = 3
print a * b

c = 7
d = 2
print c * d

e = "5"
f = "3"
print e + f

a = 4
b = 3
print a * b

c = 7
d = 2
print c * d

e = "x"
f = "y"
print e + f

scopescope

def add_1(added):
 added = added + 1

def twice(added):
 added = added * 2

added = 4
add_1(added)
twice(added)
add_1(added)
twice(added)
print added

def add_1(added):
 added = added + 1
 return added

def twice(added):
 added = added * 2
 return added

added = 4
add_1(added)
twice(added)
add_1(added)
twice(added)
print added

whitespacewhitespace

intercept = 1
slope = 5

x_base = 0
y_base = slope * x_base + intercept
print x_base
print y_base

x_other = x_base + 1
y_other = slope * x_other + intercept
print x_other
print y_other

x_end = x_base + x_other + 1
y_end = slope * x_end + intercept
print x_end
print y_end

intercept = 1
slope = 5

x_base = 0
y_base = slope * x_base + intercept
print x_base
x_other = x_base + 1

print y_base
y_other = slope * x_other + intercept
print x_other
print y_other

x_end = x_base + x_other + 1
print x_end
y_end = slope * x_end + intercept
print y_end

4. Modeling: Mr. Bits4. Modeling: Mr. Bits

Completed work
Basic model design
Preliminary model based on Python ACT-R
Dagsthul talk on inductive programming (December)

Proposed work
Line-based model with eye, DM, BM components
Qualitative comparison with human data

The basis of any informed discussion is a mathematical model. The best way to think of
a mathematical model is a way to force everyone to clearly enumerate all assumptions
being made, and to accept all logical reasoning that follows from those assumptions.

Given a model, everyone involved in a discussion can agree that either the conclusions
of the model are correct, or one of the assumptions going into the model must be false.

— Chris Stucchio, http://www.chrisstucchio.com/blog/2013/basic_income_vs_basic_job.html

Model OverviewModel Overview

Computational process model with active vision
Software complexity is resource expenditure

Reading and predicting printed output of code
Same task as human programmers

Implemented on top of Python ACT-R
Part of the eyeCode library

LimitationsLimitations

Subset of Python
for, if, def, print

Single file program, one screen
Basic text I/O schema, no OO
Discrete retina, line-based reading
No production learning (learning happens in DM)

Comparison to KLM and GOMSComparison to KLM and GOMS
Keystroke-Level Model (KLM)Keystroke-Level Model (KLM)

Task defined in terms of key presses, mouse clicks, mental preparation
Fixed times for pressing keys, pointing mouse
Skilled vs. unskilled timings possible

Goals, Operators, Methods, and Selection rules (GOMS)Goals, Operators, Methods, and Selection rules (GOMS)

Task defined by goals/methods/rules, realized by operators
Eye movements, perceptual/cognitive/motor processors

Fast, medium, slow times for operators
Opaque cognition, no possibility of errors

ACT-RACT-R

Adaptive Control of Thought - Rational
Atomic Components of Thought

Cognitive architecture (CMU)
Implemented in LISP, Java, Python

Defines atomic perceptual/cognitive actions
Eye movements/encoding, memory retrieval, motor movements

Production-based
IF-THEN rules + current state determine next state

Subsymbolic layer
Declarative memory noise, manual "jamming"

ACT-R ModulesACT-R Modules

Mr. Bits and ACT-RMr. Bits and ACT-R

Goal
High-level strategy: skim vs. predict
Sub-goal: chunk or trace

Visual
Line-aligned sensor
Whitespace-separated tokens into Imaginal

Imaginal
Context of current line/branch/loop
Type of line, role of variables

Declarative
Short and long-term memory for variables/locations
Forgetting causes a re-trace

Procedural
Behaviors to categorize lines, update DM, drive sensor

Manual
Type response

Mr. Chips RetinaMr. Chips Retina

Open Questions
Add noise to saccades?
Distinguish numbers/letters/operators in para-foveal?
Peripheral vision, sensor shape?

ACT-R Declarative MemoryACT-R Declarative Memory

Chunks (key/value pairs) with spreading activation
Decay and retrieval latency predictions (Bayesian calculus)

QuestionsQuestions

Probe by identifier prefix? p_y when p_x is seen
Summary versus details for variables/functions
Existing programming ontology?

Productions (Behaviors)Productions (Behaviors)

LHS: patterns/guards, RHS: updates to buffers/modules
Many ways to accomplish one behavior (within time constraints)

(p encode-letter
 =goal>
 isa read-letters
 state attend
 =visual>
 isa text
 value =letter1
 ?imaginal>
 buffer empty
==>
 =goal>
 state wait
 +imaginal>
 isa array
 letter1 =letter1
)

overload - plusmixedoverload - plusmixed

Move eye to line 11.
Parse a = 42.
Store a in DM with type int and value 43.
Move eye to line 24.
Parse b = 35.
Store b in DM with type int and value 36.
Move eye to line 37.
Parse print a + b8.
Retrieve a from DM9.
Retrieve b from DM10.
Look up 4 + 3 in DM11.
Type 712.

...

Prototype Model: Mr. Bits 0.1aPrototype Model: Mr. Bits 0.1a

a = 4
b = 3
print a + b

c = 7
d = 2
print c + d

e = "5"
f = "3"
print e + f

a = 4
b = 3
print a + b

multimixedmultimixed plusmixedplusmixed stringsstrings

Example: OverloadExample: Overload

a = 4
b = 3
print a * b

c = 7
d = 2
print c * d

e = "5"
f = "3"
print e + f

a = 4
b = 3
print a + b

c = 7
d = 2
print c + d

e = "5"
f = "3"
print e + f

a = "hi"
b = "bye"
print a + b

c = "street"
d = "penny"
print c + d

e = "5"
f = "3"
print e + f

Example: OverloadExample: Overload

overload - plusmixedoverload - plusmixed

Move eye to line 11.
Parse a = 42.
Store a in DM with type int and value 43.
Store int in DM4.
Move eye to line 25.
Parse b = 36.
Store b in DM with type int and value 37.
Store int in DM8.
Move eye to line 39.
Parse print a + b10.
Retrieve a from DM11.
Retrieve b from DM12.
Retrieve + from DM for int and int13.
Look up 4 + 3 in DM14.
Type 715.

...

Prototype Model: Mr. Bits 0.1aPrototype Model: Mr. Bits 0.1a

a = 4
b = 3
print a + b

c = 7
d = 2
print c + d

e = "5"
f = "3"
print e + f

a = 4
b = 3
print a + b

A Model of Human Programmers?A Model of Human Programmers?

Perhaps not exactly, but
Framework for testing a family of models
Provides timing and output predictions for task
Makes important questions explicit
First attempt at a program comprehension process model based on a cognitive architecture

5. Conclusion and Future Work5. Conclusion and Future Work

Spatial reasoning
Cognitive domain ontologies
Research plan

Glasgow Spatial Array (1/2)Glasgow Spatial Array (1/2)

Qualitative spatial reasoning (left-of, contains, etc.)
Goal: better timing predictions for tracing

Glasgow Spatial Array (2/2)Glasgow Spatial Array (2/2)

Qualitative spatial reasoning (left-of, contains,
etc.)
Augmented with cardinal directions (NE-of and
E-of)

QuestionsQuestions

Time cost for array inspection and reasoning?
How to represent data flow? Time space?≈

Cognitive Domain Ontologies (1/2)Cognitive Domain Ontologies (1/2)

Domain knowledge represented as entities, relationships, constraints
Constraint solver solutions are "possible worlds"
Goal: recognize variable roles, algorithms

Cognitive Domain Ontologies (2/2)Cognitive Domain Ontologies (2/2)

Top-down: entity is asserted, evidence is searched for
Bottom-up: evidence is found, possible entities are considered

Research TimelineResearch Timeline

Project Planned Dates Status

Literature review of Psychology
of Programming

Spring-Summer
2011

Complete

Mechanical Turk and
eye-tracking experiments

Spring-Fall 2012 Complete

Data analysis and publication of
results

Fall 2013-Fall
2014

In Progress

Cognitive model development
and follow-up experiment

Spring
2014-Spring
2015

In Progress

Final results Spring 2015 Incomplete

Thank you!Thank you!

