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Michael Edward Hansen

QUANTIFYING CODE COMPLEXITY AND COMPREHENSION

What factors impact how difficult code is to understand? Small, simple programs are often easier to grasp,

but can still be locally ambiguous, visually confusing, or violate implicit expectation. The cognitive

complexity of a program is something more than its line length, visual layout, and problem domain. It is a

gestalt phenomena that arises when a programmer must perform a specific task on a given program or

segment of code. Modeling these phenomena is a challenging real-world problem at the intersection of

computer science and cognitive science.

Programmers have been the subject of traditional psychology experiments for several decades, correlating

code features with task performance. The recent inclusion of eye-tracking in program comprehension

experiments, however, has given researchers a unique window into programmers’ cognitive processes.

Advances in the state of the art for quantitative cognitive modeling have opened the door for a unique

confluence of technique and technology: quantitative, cognitive models of human program comprehension.

We present an experiment in which 162 programmers, from beginner to expert, were asked to predict the

printed output of ten short Python programs. Different versions of the same program were randomly

selected, exposing groups of participants to minor variations in code spacing, naming, and function. A

subset of participants performed the experiment in front of an eye tracker, allowing for a combined analysis

of reading and response behavior. The observed errors, timings, and keystrokes formed the basis for two

program comprehension models: one modeling correct participants’ low-level reading and response

behavior, and the other modeling incorrect participants’ interpretation errors. These models form the

foundation for future research in program comprehension, and join the frontiers of quantitative modeling in

cognitive science.

Andrew Lumsdaine, Ph.D.

Robert Goldstone, Ph.D.

Raquel Hill, Ph.D.

Chen Yu, Ph.D.
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1 Main Introduction

What makes some code harder to understand? The behavior of small, simple programs is often

easier to predict than larger programs with many inter-connected components. Yet small programs

or snippets of code can still be difficult to understand because they are locally ambiguous, visually

confusing, or violate some unwritten rule [16, 89]. The cognitive complexity of a program is something

more than its length, layout, or even its problem domain; it is a gestalt phenomena that arises when

a programmer must perform some task on a specific program. While experience (and tooling) can help

programmers reduce this complexity, there are cases where implicit expectations can lead even the

most experienced programmers astray [46]. What is the source of these cognitive errors? Can they

be predicted using some model of a programmer?

For nearly four decades, psychologists have studied programmers and the kinds of errors they

make when reading and writing code. Prior experience, both with the programming language and

problem domain has been identified as an important variable when predicting a programmer’s

performance [29]. But the nuanced relationship between experience, task, code, and performance

ultimately depends on internal cognitive processes and mental models. More recently, eye-tracking

has enabled cognitive scientists to observe programmers’ low-level reading behaviors, and begin to

infer the details of their inner mental processes [4, 14]. At the same time, quantitative cognitive

modeling has made great strides towards tackling larger, “real world” tasks using frameworks like

ACT-R [3, 78]. A confluence of these techniques and technologies is the focus of this dissertation

and line of research, with the goal of producing a quantitative cognitive model of human program

reading and comprehension.

Two experiments, collectively referred to as the eyeCode experiment, run through the heart of

this research effort. In eyeCode, we asked 162 programmers of varying experience levels to predict

the printed output of ten small Python programs. Our bank of twenty-five programs contained two

or three versions of the ten programs each programmer randomly saw, most with subtle notational

differences. By observing errors, timing differences, and keystrokes, we characterized the effect of these

notational differences on the programmers while taking their experience and education levels into

account. For the 29 local participants who performed eyeCode in front of an eye-tracker [95], eye

movement data was also available.
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We developed two cognitive models, which quantify program understanding at different levels

of abstraction. The first, called Mr. Bits (after the Mr. Chips model of text comprehension [57]),

predicts the eye movements and keystrokes of a programmer reading and responding to the

eyeCode task. Mr. Bits is based on the ACT-R cognitive architecture, and assumes the programmer

does not make errors when interpreting their programs. We found that a specific version of Mr.

Bits fit our human data the best: one with ACT-R’s sub-symbolic functionality enabled (i.e., with

memory retrieval times based on recency and frequency) and the inability to remember entire lists

of numbers after a single viewing. Although Mr. Bits does not make errors, the simulated time

taken by the model to read and respond to a program may be useful as a complexity metric. Mr.

Bits’ “trial time” was moderately correlated with other common code complexity metrics, such as

number of lines and branch points, but did not significantly overlap with any single existing metric.

Thus, this model may serve as a means of ranking programs by their cognitive complexity.

Our second model, Nibbles (a play on the name Mr. Bits), took a very different approach.

Using a formalism called Cognitive Domain Ontologies (CDOs) and a constraint solver, Nibbles is

able to generate alternative interpretations of code, some of which may contain errors. A subset of

Python’s grammar, as well as knowledge about basic variable types and categories of tokens and

lines, is included in Nibbles as a set of constraints. These constraints, combined with observed code,

allow the model to prune its space of possible programs down to a single “best” interpretation.

Given some basic structural constraints – e.g., token lengths and counts – Nibbles can also infer

the details of unobserved code. Due to the large number of possible programs, even for Nibbles’

limited subset of Python, a form of attention was necessary to limit the scope of inference to nearby

code only. We used Nibbles to model three of the most common errors observed in the eyeCode

experiment, from incorrect line groupings to deceptively non-functional code. A combined model

with Mr. Bits and Nibbles is planned for future work.

This dissertation is broken into three main parts, each of which should be readable in isolation.

Part 1 examines the results of both experiments, including remote participants from Amazon’s

Mechanical Turk [2]. We quantified participants’ performance using metrics like the string-edit

distance [79] between their response from the correct one, and how long they took to complete each

trial. We found that the correctness of a participant’s response for a given trial could be reasonably

predicted from the number of (extra) keystrokes they made, the proportion of the trial spent reading
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versus typing, and how long the trial took from start to finish. The main contributions of Part 1

are (1) defining a family of performance metrics for our output prediction task, (2) quantifying

participants’ performance differences between different versions of the “same” program, and (3)

the identification and categorization of common errors due to expectation violations or aspects of

physical notation.

Part 2 focuses on data collected from the 29 eye-tracking participants of the eyeCode experiment.

We develop a methodology for analyzing this data, and a Python library (also called eyeCode)

that generates useful summary plots of eye movement data for program comprehension experiments.

Our findings were partially in-line with others’, such as the observation that keywords are the

least frequently fixated tokens. We observed different values for eye-tracking metrics – e.g., mean

fixation duration – and, surprisingly, did not find a significant correlation between a programmer’s

experience and any of our metrics. We hypothesize that this is due to the uniqueness of our

output prediction task, and consider the task itself to be a contribution. Additionally, the eyeCode

Python library is free and open source [62] for other researchers to use, as well as the complete eye

movement dataset. Finally, the use of transition matrices and time-series metrics for identifying

import code lines and moments in a trial has contributed to research on computing education [15].

Part 3 describes two models of program comprehension, based on the human errors observed

in the eyeCode experiment. Mr. Bits, our lower-level ACT-R model, predicts the eye movements

and keystroke timings of an eyeCode participant reading and responding to a particular program.

Mr. Bits uses the built-in Python debugger to parse code and generate its evaluation goals, while

ACT-R’s declarative memory, visual, procedural, and motor modules combine to produce human-like

timings. Nibbles parses raw text, unlike Mr. Bits, but does not produce timing/keystroke predic-

tions. Instead, a “mental model” of the program is generated after reading each line, based on a

formalism called Cognitive Domain Ontologies [33]. Using a LISP-based constraint solver named

Screamer [88], Nibbles infers the semantics of tokens, lines, and groups of lines (e.g., loops, function

definitions). Both models, Mr. Bits and Nibbles, are contributions to the program comprehension

cognitive modeling community. A combined model, spanning the gap from raw text to eye move-

ments and keystroke timings, would be a major step forward for cognitive modeling in general.

This dissertation lays the foundation for such a model, and we are excited to see what can be built

upon it.
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Part 1

What Makes Code Hard to Understand?
Evidence from Output Prediction

Abstract

What factors impact the comprehensibility of code? Intuition and previous research suggests

that simpler, expectation-congruent programs should take less time to understand and be

less prone to errors. We present an experiment in which participants with varying levels

of programming experience predict the printed output of ten short Python programs. We

use subtle differences between program versions to demonstrate that seemingly insignificant

notational changes can have profound effects on prediction correctness, response times, and

keystrokes. Our results show that experience increases performance in most cases, but may

hurt performance significantly when underlying assumptions about related code statements are

violated. Additionally, we find that response correctness can be predicted using a combination

of performance metrics and participant demographics.
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2 Part 1: Introduction

Software complexity is “a measure of resources expended by a system [human or other] while

interacting with a piece of software to perform a given task.”

- Basili, 1980

The design, creation and interpretation of computer programs are some of the most cognitively

challenging tasks that humans perform. Understanding the factors that impact the cognitive

complexity of code is important for both applied and theoretical reasoning. Practically, an enormous

amount of time is spent developing programs, and even more time is spent debugging them. If we

can identify factors that expedite these activities, a large amount of time and money can be saved.

Theoretically, programming is an excellent task for studying representation, working memory,

planning, and problem solving in the real world.

A program is an abstract specification for a set of operations, but its code exists in a concrete

notational system made to be read and written by humans. With some exceptions, we intuitively

expect programs whose code is shorter and simpler to be easier to understand, especially for more

experienced programmers. Given the expressive power of most programming languages, we also

expect the exceptions to be fairly nuanced; even operationally simple programs may be difficult

when misleading variable names are used or implicit expectations are violated [89].

What are the relationships between a program’s source code, the programmer interpreting

it, and how difficult the program is to understand? To start, we must quantify each of these

components, including what it means to understand a program. In this part, we use an output

prediction task to quantify understanding – we say a programmer understands a program if she

can accurately predict its printed output. Using a set of five performance metrics, we measure a

programmer’s prediction accuracy, response time, and individual keystrokes. To quantify features

of a program’s source code, we employ several commonly-used code complexity metrics, such as

lines of code, cyclomatic complexity, and Halstead effort. These metrics are often used to predict

how error prone or difficult to understand a piece of code is. Lastly, we quantify aspects of the

programmers themselves using self-reported demographics, such as programming experience

and age. Our experiment explores the relationships between these demographics, prediction

performance, and code complexity.
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The Experiment and Research Questions

We present a web-based experiment in which participants with a wide variety of Python and

overall programming experience predicted the output of 10 small Python programs. Most of the

program texts were less than 20 lines long and had fewer than 8 linearly independent paths (as

measured by cyclomatic complexity [59]). We used ten different program kinds, each of which had

two or three versions with subtle differences. For each participant and program, we collected five

different performance measures:

1. Output distance - the normalized edit distance between the correct answer and the
participant’s output prediction.

2. Duration - the amount of time taken to predict a single program’s output (log scale).

3. Keystroke coefficient - the number of keystrokes a participant typed divided by the number
of keystrokes needed to type the correct output.

4. Response proportion - the amount of time between the first and last keystroke divided by
the total trial duration.

5. Response corrections - the number of times the participant’s output prediction decreased in

size (i.e., backtracks or corrections).

The different versions of our programs were designed to test three underlying research questions.

First, “How are programmers affected by programs that violate their expectations, and does this vary with

expertise?” Previous research suggests that expectation-violating programs should take longer to

process and be more error-prone than expectation-congruent programs. There are reasons to expect

this benefit for expectation-congruency to interact with experience in opposing ways. Experienced

programmers may show a larger influence of expectations due to prolonged training, but they may

also have more untapped cognitive resources available for monitoring expectation violations. In

fact, given the large percentage of programming time that involves debugging (it is a common

saying that 90% of development time is spent debugging 10% of the code), experienced

programmers may have developed dedicated monitors for certain kinds of expectation-violating

code.

The second question is: “How are programmers influenced by physical characteristics of notation, and does

this vary with expertise?” Programmers often feel like the physical properties of notation have only a

minor influence on their interpretation process. When in a hurry, they frequently dispense with

6



recommended variable naming, indentation, and formatting as superficial and inconsequential.

However, in other formal reasoning domains such as mathematics, apparently superficial

formatting influences like physical spacing between operators has been shown to have a profound

impact on understanding [43]. Furthermore, there is an open question as to whether experienced

or inexperienced programmers are more influenced by similar physical aspects of code notation.

Experienced programmers may show less influence of these “superficial” aspects because they are

responding to the deep structure of the code. By contrast, in math reasoning, experienced

individuals sometimes show more influence of notational properties of the symbols, apparently

because they use perception-action shortcuts involving these properties in order to attain efficiency.

Our final question is deceptively simple: “Can task performance be predicted by code complexity metrics

and programmer demographics?” It is common practice in some organizations to use “code

complexity” metrics, such as number of lines and control flow statements, to identify potentially

error-prone code that is hard to comprehend [36]. Well-defined metrics, including lines of code and

cyclomatic complexity [59], have recommended limits for components of large software

projects [64]. One failing of these metrics, however, is that they do not take a programmer’s

experience into account. While experience does not necessarily equal expertise, a veteran

programmer and a novice are likely to face different challenges when comprehending the same

code. Although our programs and task are fairly simple, it is reasonable to expect that (1) task

performance be moderately correlated with code complexity metrics, and (2) performance

predictions improve when programmer demographics are also considered.

Outline. Section 3 begins by providing the necessary background on research in the psychology of

programming. Next, Section 4 provides import details about our experiment (see Appendix A for

the source code to all programs). Results are presented in Section 5, broken down by

performance/complexity metrics, program versions, and participant expertise. Section 6 discusses

the results from the previous section, and relates them to our three research questions. Finally,

Section 7 concludes and describes our plans for future work.
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3 Part 1: Background and Related Work

One feature which all of these [theoretical] approaches have in common is that they begin with

certain characteristics of the software and attempt to determine what effect they might have on

the difficulty of the various programmer tasks.

A more useful approach would be first to analyze the processes involved in programmer tasks,

as well as the parameters which govern the effort involved in those processes. From this point

one can deduce, or at least make informed guesses, about which code characteristics will affect

those parameters.

- Cant et. al, 1995

Psychologists have been studying programmers for at least forty years. Early research focused on

correlations between task performance and human/language factors, such as how the presence of

code comments impacts scores on a program comprehension questionnaire. More recent research

has revolved around the cognitive processes underlying program comprehension. Effects of

expertise, task, and available tools on program understanding have been found [29].

Studies with experienced programmers have revealed conventions, or “rules of discourse,” that

can have a profound impact (sometimes negative) on expert program comprehension [89].

Violations of these rules are thought to contribute directly to how difficult a program is to

understand. Much like violating the “rules” of verbal discourse can make a conversation difficult

(e.g., awkward phrasing or unconventional uses of words), Soloway and Ehrlich argued that

violating discourse rules in code strains communication between programmers. Interestingly, this

strained communication affects expert programmers more than novices, suggesting that

programming expertise is partially due to learned semantic conventions.

In another psychology of programming study, Soloway and Detienné asked programmers to recall

programs that subtly violated particular coding conventions, such as naming the outermost for

loop index j instead of i. Expert programmers consistently recalled the loop index as the more

canonical i, suggesting that storage of code in long-term memory is mediated by a template-like

structure [27]. deGroot and Gobet have extended standard short-term memory chunking theory

with templates, long-term memory structures with “slots” that allow for rapid memorization of

domain items [25]. This extension, however, has only been applied to the domain of chess, where
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templates are predicted to correspond to common chess piece positions. For programmers, the

precise correspondence between templates and code is currently unknown. Templates may exist

for code directly (e.g., for loops, if statements), or may correspond to higher-level attributes of the

code, such as data-flow patterns or variable roles [74].

Our present research focuses on programs much less complicated than those the average

professional programmer typically encounters on a daily basis. The demands of our task are still

high, however, because participants must predict precise program output. In this way, it is similar

to debugging a short snippet of a larger program. Code studies often take the form of a code

review, where programmers must locate errors or answer comprehension questions after the fact

(e.g., does the program define a Professor class? [10]). Our task differs by asking programmers to

mentally simulate code without necessarily understanding its purpose. In most programs, we

intentionally use meaningless identifier names where appropriate (variables a, b, etc.) to avoid

influencing the programmer’s mental model.

Similar research has asked beginning (CS1) programming students to read and write code with

simple goals, such as the Rainfall Problem [44]. To solve it, students must write a program that

averages a list of numbers (rainfall amounts), where the list is terminated with a specific value –

e.g., a negative number or 999999. CS1 students perform poorly on the Rainfall Problem across

institutions around the world, inspiring researchers to seek better teaching methods. Our work

includes many Python novices with a year or less of experience (94 out of 162 participants), so our

results may also contribute to ongoing research in early programming education.

3.1 Code Complexity Metrics

Code complexity has traditionally been measured using structural or textual features of the code

(sometimes called the representational complexity [16]). These complexity metrics are often used

as proxies for the maintainability or error-proneness of a piece of code [40]. They are quick and

easy to compute, allowing them to be used as tools for identifying potentially problematic code in

large software projects. There are drawbacks to using some of these metrics, however, such as their

strong statistical correlation with code size [37]. Because of this correlation, it is often difficult to

quantify differences between large codebases are that truly complex and ones that are simply

9



repetitive, though metrics inspired by Kolomogorov complexity may overcome this problem [98].

Traditional complexity metrics do not claim to directly measure how difficult a program is to

understand – its cognitive complexity [16]. However, some researchers have claimed they

measure something related. It has been argued that having to mentally juggle too many lines of

code, branches, or operators and operands strains the capacity limitations of programmers’

short-term memories [55]. Therefore, metrics such as number of lines, cyclomatic complexity, and

Halstead effort can be used as a proxy for cognitive complexity. While it has been found that

short-term memory capacity is indeed limited and approximately the same across individuals, the

size of individual items in short-term memory (called chunks) varies greatly [19]. This means we

cannot infer that a given piece of code will “overflow” a programmer’s short-term memory simply

because we cannot assume that a textual measure captures the size of their short-term memory

chunks. More complete cognitive models have been proposed to capture the relationships between

code text and program understanding, such as the Stores Model [30] and the Cognitive Complexity

Model [16]. No quantitative implementation of these models currently exists, however, so their

ability to predict performance in a particular programming task (such as output prediction)

remains unknown.

4 Part 1: Methodology

One hundred and sixty-two participants were recruited from the Bloomington, IN area

(29 participants), on Amazon’s Mechanical Turk (130 participants), and via e-mail (3 participants).

The local participants in Bloomington were paid $10 each, and performed the experiment in front

of an eye-tracker (see Section 7.1 regarding future work). Mechanical Turk participants were paid

$0.75, and performed the experiment over the Internet via a web browser. All participants were

screened for a minimum competency in Python by passing a basic language test. The mean

participant age was 28.4 years, with an average of 2.0 years of self-reported Python experience and

6.9 years of programming experience overall. Most of the participants had a college degree (69.8%),

and were current or former Computer Science majors (52.5%). Figure 1 has a more detailed

breakdown of the participant demographics.

The experiment consisted of a pre-test survey with questions about demographics and experience,

10



Figure 1: Demographics of all 162 participants.

ten trials (one program each), and a post-test survey assessing confidence and requesting feedback.

The pre-test survey gathered information about the participant’s age, gender, education, Python

experience, and overall programming experience. Participants were then asked to predict the

printed output of ten short Python programs, one version randomly chosen from each of ten

program bases (Figure 2). The presentation order and names of the programs were randomized,

and all answers were final (Figure 3). No feedback about correctness was provided and, although

every program produced error-free output, participants were not informed of this fact beforehand.

The post-test survey gauged a participant’s confidence in their answers and the perceived difficulty

of the task overall.

We collected a total of 1,620 trials from 162 participants starting November 20, 2012 and ending

January 19, 2013. Trial responses were manually screened, and a total of 35 trials were excluded

based on the response text 1. Trial completion times ranged from 12 to 518 seconds. Outliers

beyond three standard deviations of the mean (in log space) were discarded (10 of 1,585 trials),

leaving a total of 1,575 trials to be analyzed. Participants had a time limit of 45 minutes to complete

the entire experiment (10 trials + surveys), but were not constrained to complete individual trials in

1Excluded trial responses were things like “error” or an English description of the code. While these responses may
be interesting in their own right, we do not consider them relevant to the intended task.
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Figure 2: Sample trial from the experiment (between inline). Participants were asked to predict the exact output
of ten Python programs.

any specific amount of time.

Figure 3: Home screen for the experiment. Each program was assigned a random name.

There were a total of twenty-five Python programs in our experiment belonging to ten different

program bases. These programs were designed to be understandable by a wide audience, and

therefore did not touch on Python features outside of a first or second introductory programming

course (no lambda expressions, generators, etc.). The programs ranged in size from 3 to 24 lines of

code, and did not make use of any standard or third-party libraries. Code metrics for each program

were calculated using the open source PyMetrics library [18] (see Table 21 in the appendix). Most
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programs fell well within recommended complexity metric ranges for being “understandable” [64].

4.1 Mechanical Turk

One hundred and thirty participants from Mechanical Turk (MT) completed the experiment online

and received $0.75 each . All MT workers were required to pass a Python pre-test, and could only

participate in the experiment once. Although participants were not paid based on performance,

some precautions were taken to ensure the task was completed properly. All code was displayed as

an image, making it difficult to copy/paste the code into a Python interpreter for quick answers.

Responses were manually screened, and any restarted trials 2 or unfinished experiments were

discarded (18 out 1,620 trials overall). For reference, the website and associated code for the

experiment is freely available online at https://github.com/synesthesiam/eyecode-web.

4.2 Python Programs

Although individual participants were tested on only ten programs, there were a total of

twenty-five Python programs in the experiment. We had ten program bases, from which one of 2-3

versions was randomly selected and given to a participant. Appendix A contains the complete

listing of all program source code and printed output. While the programs were small and

relatively simple, they were designed to test specific effects of physical notation and expectation

violations.

The between, counting, funcall, order, rectangle, and whitespace programs were designed to

test different choices in physical notation. For these program bases, all versions produced identical

output. We expected differences in notation to result in differences in performance, specifically in

the amount of time taken to complete the trial. For example, the order programs had 3 functions

that were defined and called either in the same order (inorder) or a different order (shuffled). We

expected faster responses in the same order case because the congruence would likely aid visual

search..

The initvar, overload, partition, and scope programs were designed to violate the

programmer’s expectations. Our expectations were that experienced programmers would be more

2A trial could be restarted by manipulating the web browser’s address field. Our server allowed participants who
restarted trials to complete the experiment, but those individual trials were excluded from analysis.
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prone to specific mistakes. The scope programs, for instance, contained several functions that did

not modify their arguments or return any value (an explicit violation of Soloway’s maxim “don’t

include code that won’t be used” [89]). We hypothesized that less experienced programmers

would interpret the programs literally, giving them an advantage when the code and common

expectations diverged. Similarly, two out of three versions of initvar contained an off-by-one

error in a summation – something an experienced programmer may miss if they aren’t careful.

4.2.1 Complexity Metrics

We quantified differences between programs using six code complexity metrics (see Table 1).

These metrics were computed on the source code with features such as number of lines,

independent code paths, and operator / operand counts using the open source PyMetrics

library [18]. A complete listing of programs and their associated complexity metrics is available in

Table 21 in the Appendix. While these metrics alone do not strongly predict performance in our

task (i.e., longer programs are not necessarily more difficult), they are expected to become more

useful when combined with additional information about the programmer (e.g., experience, age).

Section 5.1.6 explores this in more detail.

One of the most common complexity metrics, lines of code, is computed by simply counting up

lines in the program’s source code (including blank lines, in our case). Counting lines is fast, and

the result can be used as a rough indication of a program’s overall complexity; much like using

page count gives a sense of how complex a book’s plot may be. Lines and pages, of course, are not

a reliable proxy for how difficult a book or a program is to understand. Hundreds of lines of

boilerplate C code, and an extremely clever twenty-line Haskell program will be assigned high and

low complexity rankings respectively if lines of code is the only metric.

Another common metric, cyclomatic complexity, is computed by counting up control flow

statements [59] (e.g., if, for, while). Cyclomatic complexity measures the number of linearly

independent paths through a program, and is useful when determining the number of tests needed

to achieve proper code coverage. More often, however, this metric is used to predict the number of

defects in a function or entire program [39]. Cyclomatic complexity has also been found to be

highly correlated with lines of code [36]. This is not entirely unexpected, however. It is difficult (or
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at least uncommon) to write large programs with very few control flow statements.

In 1977, Maurice Halstead introduced several complexity metrics, collectively referred to as the

Halstead metrics [45]. These metrics depend on dividing the syntax tokens of a programming

language into operators and operands. Given this division, the following quantities can be computed

for a program or sub-module: (N1) the total number of operators, (N2) the total number of

operands, (η1) the number of distinct operators, and (η2) the number of distinct operands. Halstead

proposed the following metrics based on these quantities:

• Difficulty: (η1 × N2)/(2× η2)

• Volume: V = (N1 + N2)× log2(η1 + η2)

• Effort: E = V × D

Halstead predicted that the volume (V) and effort (E) values for a program would be related to the

time needed to produce and review the program. Our preliminary analysis found that these two

quantities were almost perfectly correlated for all programs, so we focus on Halstead effort only as

a measure of complexity. In addition to being correlated with lines of code, Halstead effort has also

been found to be linearly correlated with source code indentation [48].

Because our task is focused on output prediction, we include two additional metrics derived from

the output of each program. The number of output characters and output lines are simply the

number of individual characters and lines in the true printed output. While these are not directly

observable in the source code, they can have an important effect on performance. A program with

more characters in its output, for example, may be observed to have more response corrections

simply because the chance of typing mistake is higher while responding, not because the program

is more difficult to understand.

4.3 Performance Metrics

Participants’ performance was quantified with a set of five performance metrics (Table 2). To help

explain the details of each metric, consider the sample trial presented in Figure 4. In this trial, the

participant is presented with the Python program print "1" + "2". After the initial reading period

(i.e., before any keystrokes), the participant types a “3”. With that first keystroke, the response period

has begun. Continuing with the trial, the participant realizes their mistake (+ means concatenate in
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Metric Definition

Lines of Code Number of lines in the code (includes blank lines)
Cyclomatic Complexity Number of linearly independent paths through the program
Halstead Volume Program length (N) times the log of the program’s vocabulary

(n).
Halstead Effort Effort required to write or understand a program (D×V)
Output Characters Number of characters in the program’s printed output
Output Lines Number of lines in the program’s printed output

Table 1: Code complexity metrics computed for each program.

Python when the arguments are strings), and modifies their response before submitting by

pressing the delete key (DEL) followed by a “1” and then a “2”. The participant then submits their

response, concluding the trial.

Figure 4: Anatomy of an individual trial.

The first performance metric we computed was the output distance. This is just the string edit

distance [79] between the participant’s response and the actual program output, normalized by the

length of the longest string. An output distance of 0 means that the participant’s response is a

perfect match, while a distance of 1 means that all response characters should have been different.

For the sample trial in Figure 4, the output distance would be 0 (a perfect score). We ignored

whitespace, newlines, and certain formatting characters (square brackets, commas, quotes) when

computing the output distance. This was intended to broaden the definition of a “correct” answer

by ignoring characters that are only artifacts of the printing process. Out of the 1,575 trials, there
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were a total of 1,178 trials with correct answers (this number only drops to 1,001 if we require

perfect whitespace and formatting characters).

The duration of each trial was recorded from start (participant is presented with the program) to

finish (participant submitted their response) by the web server. This value was used as the

denominator in the response proportion metric (described below). For outlier removal and when

computing statistics, we used log duration. Especially within each program base, log duration

distributions were approximately normal (Figure 6).

A keystroke coefficient was computed by dividing the total number of keystrokes a participant

typed (including deletions) by the minimal number of keystrokes required to produce a perfect

response. In the sample trial described above, the participant typed a total of four characters (3,

DEL, 1, 2) when only two were required (1, 2). This trial, therefore, would have a keystroke

coefficient of 4/2 = 2. A keystroke coefficient less than 1 could be achieved in one of two ways: (1)

by providing an incorrect response that was shorter than required, or (2) by copying and pasting

text. We explore both of these possibilities in Section 5.

The response proportion of a trial is the amount of time between the first and last participant

keystroke divided by the trial duration. Conceptually, this represents the proportion of a trial that

was spent doing reading and responding rather than just reading (at the start) or just reviewing (at

the end). In the sample trial, the response proportion would be approximately 0.5. Though there is

a relationship between this metric and keystroke coefficient, it captures something different:

intermediary results. Even if a participant types the exact number of necessary keystrokes (a

coefficient of 1), their response proportion could be low (mostly reading, followed by a quick

response) or high (little reading, slow construction of a response).

A response correction occurs when the participant’s current response size decreases for the first

time since the last increase. If we were to plot the number of characters in the participant’s

response over time, the number of response corrections would correspond to the number of

troughs or downward slopes in the graph. While this metric will clearly be correlated with

keystroke coefficient, it distinguishes between insertions and deletions. The sample trial only has a

single response correction, and this would still be the case even if the participant had typed “33”

instead of “3” initially.
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Metric Definition Range/Units

Output distance Normalized edit distance between correct answer and
participant’s output prediction

[0, 1]

Duration Time taken to complete a trial (reading and response) [0,+∞] log ms
Keystroke coefficient Number of participant keystrokes divided by minimal

required keystrokes for correct answer
[0,+∞]

Response proportion Amount of time between first and last keystroke di-
vided by trial duration

[0, 1]

Response corrections Number of times the participant’s output decreased in
size (backtracks)

[0,+∞] corrections

Table 2: Performance metrics computed for each trial.

4.4 Statistics

When comparing performance metric distributions, we use non-parametric statistical methods.

Many of these metric distributions do not fit the assumptions of traditional parametric methods

(e.g., ANOVA, t-test), so we use their non-parametric analogues. The Kruskal-Wallis H test serves

our analogue of the ANOVA, with pairwise follow-up tests being done with the Mann-Whitney U

test – our analogue of the t-test [86]. These pairwise U tests include a Bonferroni correction with a

significance level (α) of 0.05. We calculate effect sizes for U tests using the rank-biserial correlation

r, a metric whose range is [−1, 1] with 0 meaning no correlation [103]. As a rule of thumb, we take

absolute values of r greater than or equal to 0.2 to indicate a meaningful relationship (and |r| > 0.4

as a strong relationship). To quantify correlations between two series, we use the Spearman r

correlation with a significance level (α) of 0.05. We infer weak, moderate, strong, and very strong

relationships when |r| is greater than or equal to 0.2, 0.3, 0.4, and 0.7 respectively.

For models fits, we use three standard approaches. When testing how well a fixed set of predictors

predict a response variable, we use either an ordinary least squares (OLS) or logistic fit, depending

on whether or not the response variable is binary. In both cases, a significance level of 0.05 is used

to ascertain the significance of predictor coefficients. In Section 5.1.6, a LASSO-LARS technique

with cross-validation is used to find a “best” fitting model across a set of many predictor

variables [34]. This technique avoids significance-testing problems associated with alternative

model selection methods, such as stepwise refinement and AIC/BIC ranking. Instead of using

p-values, the coefficients of predictors are “shrunk” towards zero if they are not useful when

predicting the response variable.
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5 Part 1: Results

The results of our experiment are described in detail below. We start by observing the distribution

of each performance metric, grouped by program base (Section 5.1). Next, we analyze the results

by individual program 5.2. Finally, we consider how performance varies between correct and

incorrect trials, as well as between expert and non-expert participants (Section 5.3).

5.1 By Performance Metric

We begin by discussing results at a high level across all trials. For each performance metric, we

group results by program base and look for significant patterns. Some of these patterns are

intuitively obvious, such as programs with more lines taking longer to read and respond to

(Section 5.1.2). Other patterns are not so obvious, like finding trials where participants managed to

get the right answer without typing all the necessary characters (Section 5.1.3)!

Below, we analyze each performance metric separately. Section 5.1.1 looks at the normalized

output distance between trial responses and the correct response. Section 5.1.2 examines trial

duration in log space. Our three keystroke metrics, keystroke coefficient, response proportion, and

response corrections are then covered in Sections 5.1.3, 5.1.4, and 5.1.5 respectively. Lastly, we

search for correlations between code complexity metrics, participant demographics, and

performance metrics across all trials.

5.1.1 Output Distance

In general, participants performed well in their predictions of program output. About 75% of the

individual trials results in a “correct” answer – i.e., a match with the true program output when

excluding formatting characters. Almost 64% of the trials had perfect output matches (including

whitespace and formatting characters). Figure 5 shows the output distance distributions for all

trials grouped by program base (see Section 4.3 for details). These distributions make it clear which

programs were more difficult: between, counting, and scope stand out with more output

distances above zero. The non-zero peaks, such as 0.4 in counting, correspond to common errors

made participants. Section 5.2 unpacks the results for individual programs, including which errors

were most common.
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Figure 5: Normalized output distance distributions by program base (all trials).

5.1.2 Trial Duration

The median trial duration was 55 seconds, with the full range being 12 to 518 seconds (about 8 1/2

minutes). If we split the trials into those with a correct response and those without, the median

trial durations become 55 and 50 seconds respectively. This difference, however, is not statistically

significant. When trials durations are grouped by program base and transformed to log space,

however, we can see some import timing differences (Figure 6). Many of these visual differences

are statistically significant as well. Using an all-pairs Mann-Whitney U test (with a Bonferroni

correction, α = 0.05), most of the durations distributions differ (Figure 7). The between, rectangle,

and whitespace programs stand out here – their duration distributions are different from all

others (including each other).

There is a very strong correlation between mean trial duration (again, grouped by program base),

and the number of lines in those programs (r(10) = 0.75, p < .05). This is not terribly surprising;

we expect longer programs to take more time on average to read. What is surprising, however, is

the lack of a significant correlation between mean trial duration and cyclomatic complexity (CC), a

common measure of program complexity. So while longer programs took longer to read/response

to on average, more complex programs (CC-wise) did not. If we use Halstead effort as our measure
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Figure 6: Duration distributions by program base (all trials).

Figure 7: Significant differences between trial durations grouped by base. Dark cells indicate no significant difference.
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of complexity, however, we again find a very strong correlation with mean trial duration

(r(10) = 0.78, p < .01).

5.1.3 Keystroke Coefficient

Figure 8: Keystroke coefficient distributions by program base (correct trials only).

Analyzing the distributions of keystroke coefficients provided insight into how participants were

responding, rather than just their final answer (Figure 8). In most correct trials, participants typed

only as much as necessary or just a few keystrokes extra (median coefficient was 1, mean 1.4). We

were surprised to see keystroke coefficients less than 1 for a few correct trials; this would mean that

a participant managed to type fewer keystrokes than necessary, yet still produce the correct

response! Fortunately, there is a simple explanation: copy and paste.

For the counting programs especially, we found that participants were copying and pasting

portions of their response (counting has a lot of redundant text in the correct response), allowing

them to achieve a correct answer without physically typing all the necessary keystrokes. There

were a handful of trials in other program types with a keystroke coefficient less than 1, leading us

to suspect that one or two participants were typing each program into a Python interpreter and
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pasting the results into the output box 3. These trials made up less than half a percent of our

dataset, however, so we do no consider them a thread to the validity of our results.

5.1.4 Response Proportion

Figure 9: Response proportion distributions by program base (all trials).

The response proportion distributions in Figure 9 show how much of the participants’ trials were

spent responding. Intuitively, we might expect response proportion to increase with the size of the

correct response – i.e., programs with longer outputs may take proportionally longer to respond to.

An alternative hypothesis, however, is that participants would spend more time up front reading

programs with longer outputs (perhaps because they are more complex in some sense), thus

maintaining a constant response proportion relative to output size. In this case, the data match

intuition: mean response proportion (grouped by program version) is strongly correlated with

program output size (r(25) = 0.54, p < .01).

Surprisingly, we do not find a correlation between response proportion and the number of lines in

a program (or any of our source code complexity metrics). We expected more complex programs,

as measured by lines of code, cyclomatic complexity, or Halstead effort, to have higher response

3We presented our programs as images rather than text to discourage this behavior.
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proportions because of the potential additional mental load on the programmer. A higher response

proportion would mean that the participant started typing their output early in the trial, and

continued typing late in the trial (presumably to offload mental effort). In Figure 9, we can see two

programs that fit this expectation: between and whitespace both have right-skewed distributions

and are relatively long programs. But counting and rectangle buck the trend. The counting

programs are tiny with lots of output, and the rectangle programs are long with little output.

Their distributions are also right and left-skewed, respectively – the opposite of what we might

expect from program size alone.

5.1.5 Response Corrections

Figure 10: Response correction distributions by program base (all trials).

Not all keystrokes are created equal, and Figure 10 shows that some programs resulted in more

corrections (or backtracks in response size) than others. The between and counting programs

stand out here, with median response corrections of 1 (all others had medians of 0). This can be

largely explained by the intuition that having more characters to type will simply result in more

mistakes. And indeed, we find a very strong correlation between mean response corrections

(grouped by program) and the number of characters in the correct output (r(10) = 0.90, p < .001).
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Across all trials, we found a strong positive correlation between response proportion and the

number of response corrections (r(1575) = 0.46, p < .001). This suggests that when participants

spent more of their trial time responding, that time was spent making corrections (as opposed to

carefully building their responses piece by piece). We also found weak position correlations

between keystroke coefficient/trial duration and response corrections (r(1575) ≈ 0.2, p < .001).

These correlations further support the idea that participants who took longer did so to correct

mistakes rather than read the code more thoroughly.

5.1.6 Complexity Metrics and Demographics

Can a participant’s performance be predicted by a combination of code complexity/performance

metrics and demographics? In this section, we describe several simple models for predicting

performance on individual trials. These are not intended as cognitive models, which would

describe the inner mental processes of our participants. Rather, they are descriptive models,

relating predictor and response variables mathematically. We start by examining correlations

between pairs of metrics, both complexity and performance. Next, we use a LASSO-LARS and

cross-validation technique to identify the strongest predictors of each performance metric (see

Section 4.4 for details). Finally, we focus on the normalized correct output distance and the binary

“correct/incorrect” metric for each trial, including the remaining performance metrics as predictors

in our models.

Figure 11 shows a Spearman correlation matrix between complexity and performance metrics

across all 1,575 trials. Only significant correlations above threshold have displayed numeric

values. Significance was determined via resampling: we computed the correlation matrix for 1,000

randomly shuffled versions of the data and rejected the null hypothesis for each cell if its

correlation was outside the 95th percentile of the corresponding shuffled correlation distribution.

Coefficients were also thresholded, with absolute values required to be greater than or equal to 0.2

(our threshold for a weak correlation).

Although the correlation matrix is intended for comparing complexity and performance metrics,

we can also see how strongly correlated some of the complexity metrics are with each other.

Specifically, lines of code (CodeLn) and Halstead effort (HalEff) are very strongly correlated with
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Figure 11: Spearman correlation matrices between code complexity and performance metrics (bolded). From left to
right, code characters (CodeCh), lines of code (CodeLn), correct output distance (CorrDist), cyclomatic complexity
(CyCm), log duration in milliseconds (DurLog), Halstead effort (HalEff), keystroke coefficient (KeyCoeff), output
characters (OutCh), output lines (OutLn), response corrections (RespCorr), and response proportion (RespProp).

each other, as are output characters (OutCh) and output lines (OutLn). Cyclomatic complexity

(CyCm), however, is only moderately correlated with lines of code (r(1575) = 0.30). These

correlations are not surprising in and of themselves, but they do reveal important patterns in our

programs. First, as our programs get longer, they tend to introduce more variables (Halstead

operands) but not many more branches (as measured by cyclomatic complexity). Second,

programs with more print statements (output lines) also output more characters. This correlation

could have been reversed or non-existent had we combined print statements at the end of the

program (e.g., print x, y, z as opposed three separate print statements). When interpreting the

models below, it’s important to keep these patterns in mind.

Another interesting feature of Figure 11 is that the keystroke performance metrics (response

proportion, response corrections, keystroke coefficient) are moderately to strongly correlated with

the keystroke complexity metrics (output chars/lines), while the log trial duration is strongly

correlated with code complexity metrics (lines of code, Halstead effort). This suggests that trial

duration may be driven more by the length of the program and number of unique variables than

the size of the program’s output. Surprisingly, we find no significant correlations between correct

output distance and the other metrics! This does not mean that a participant’s response correctness
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cannot be predicted, however. We turn our attention next to slightly more complex models,

involving multiple predictors.

Multiple Predictor Models

Most of our performance metrics (excluding correct output distance) are correlated with one or

more complexity metrics. But do these metrics equally contribute to performance? Additionally,

can we improve predictions by including participant demographics, specifically age, years of

Python experience, and years of programming experience? In this section, we examine performance

models with multiple predictors.

Figure 12 shows the results of our best model fits, broken down by performance metric. Recall that

these are LASSO-LARS fits, so predictors with coefficients of zero have been eliminated from the

model. Except for keystroke coefficient and response proportion, the results are somewhat

disappointing. The coefficients for all other models are quite small given the range of the

corresponding performance metrics (Table 2). Correct output distance ranges from 0 to 1, making

the largest coefficient (output lines at 0.06) only a minor contributor. Likewise, log trial duration

peaks at 13.15 in our dataset, representing approximately 8 and a half minutes, while the largest

coefficient (CyCm - cyclomatic complexity) represents an effect of about 1 and a half milliseconds.

Response corrections ranges from 0 to 8 in the data, whereas all of the corresponding model

coefficients combined do not even reach 1 (a full correction).

Only keystroke coefficient and response proportion have coefficients with meaningful values

relative to their metrics’ ranges. In both cases, the number of output lines (OutLn) is the most

significant predictor. For keystroke coefficient, more output lines predicts a lower metric value,

meaning that participants typed fewer unnecessary characters when there were fewer print

statements. Note that output characters (OutCh) is not a very significant predictor even though it

and keystroke coefficient are moderately correlated by themselves (Figure 11). It appears, then,

that participant behavior is being driven by the number of print statements, rather than the

number of characters they need to type.

Response proportion is also best predicted by output lines, but the relationship is positive. This

result has a fairly straightforward explanation – participants do not generally read the entire

program before beginning to evaluate it and respond. Thus, participants in trials whose programs
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Figure 12: Coefficients for best-fitting models by performance metric. All models were fit with LASSO-LARS and
20-fold cross validation.

28



have more print statements (output lines) tend to start responding earlier. A more detailed

analysis of individual participants may reveal more nuanced strategies, but evaluating print

statements as they are read appears to be the dominant one.

Overall, we found that most our performance metrics could not be strongly predicted simply by

code complexity metrics and participant demographics. In the next section, we focus on correct

output distance. This performance metric is unique, as it is computed after the participant’s

response has been submitted. Thus, in addition to complexity metrics and demographics, we also

consider other performance metrics as predictors.

Correct Output Distance Models

In this section, we consider models that predict a trial’s normalized correct output distance using

the corresponding program’s code complexity metrics, the participant’s demographics, and the

other performance metrics from the trial. Figure 13 shows the coefficients for a LASSO-LARS model

fit. This differs in several important ways from the CorrDist fit in Figure 12. First, the coefficients

are larger (correct distance ranges from 0 to 1), giving us more confidence in the real-world power

of the model. Second, it’s clear that the other performance metrics dominate the model; especially

response proportion. In general, it appears that trials with a larger response proportion and longer

duration had a more correct response (lower is better for CorrDist), whereas those with a larger

keystroke coefficient had less correct responses. This may be because participants that both took

more time in a trial, and spent that time slowly constructing their response, did better. If that time

was spent typing additional keystrokes – increasing the keystroke coefficient – then the additional

characters were likely mistakes.

Figure 13: Coefficients for LASSO-LARS model predicting normalized correct output distance.

Modeling how close a participant’s response was to being correct may be more fine grained than

necessary if we’re not trying to predict how correct they were. Can we get better predictions if we

simply ask whether or not a correct response was given? For this (binary) prediction, we employ a
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set of classifiers from the popular scikit-learn library [69] trained on all trials using K-fold

cross-validation (K = 20) to predict whether or not the trial response was correct. Figure 14 shows

the Area Under the receiver operating characteristics (ROC) Curve (AUC) scores for six different

classifiers trained on the same dataset. The AUC score is “the probability that the classifier will

rank a randomly chosen positive instance higher than a randomly chosen negative instance.” [38]

An AUC score of 0.5 represents random guessing, and a score of 1.0 represents perfect

classification.

Figure 14: Area Under the Curve (AUC) scores for K = 20 binary classifier runs predicting correct/incorrect trial
(left). Feature importances and standard deviations for Random Forest classifier predicting correct/incorrect trial
(right).

The six classifiers in Figure 14 are Naive Bayes (bayes), a simple stratified baseline classifier

(dummy), Extra Trees (extra), Random Forest (forest), Logistic Regression, and Decision Tree (tree).

Table 3 provides more detailed descriptions of each classifier. The boxplots on the left in Figure 14

show the AUC score distributions over all 20 cross-validation runs. As expected, the “dummy”

classifier hovers around 0.5, which is no better than random guessing. The other classifiers perform

better on average than dummy, but the Random Forest (forest) classifier outperforms the others.

This is an ensemble, or meta, classifier that constructs a “forest” of random decision trees which are

each trained on sub-samples of the data. The combined predictions of all trained trees are then

used to drive the forest’s classification of new instances.

The right-hand plot in Figure 14 dives deeper into the Random Forest classifier results. The

so-called “feature importances” are displayed in descending order, with the most important

features for prediction accuracy on top. These importances are determined by training N = 250

trees on the data, and then compiling the relative importance of each feature across them all. As
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Category Classifier Description

Naive Bayes Gaussian Bayes theorem with assumption of indepen-
dence.

Dummy Predicts based on training set’s class distribution.
Ensemble Extremely Randomized Trees Random thresholds and candidate features.
Ensemble Random Forest Constructs classifiers using random features.
Linear Logistic Regression Standard logistic regression
Decision Tree Infers if-then-else decision rules from data fea-

tures.

Table 3: Descriptions for all classifiers used to determine utility.

with the LASSO-LARS model in Figure 13, the three most important predictors are response

proportion, keystroke coefficient, and log trial duration. Here, however, keystroke coefficient is

consistently ranked higher than the others. Because we are predicting a binary outcome

(correct/incorrect) rather than the real-valued output distance, this suggests that keystroke

coefficient has a useful, though not strongly linear, relationship with response correctness. It may

be the case, for example, that a handful of extra characters is enough to guess that the participant

will be submitting an incorrect response.

5.2 By Program Version

In this section, we analyze participant performance by program version. Each program base had

2-3 versions, one of which a participant randomly received. Below, we describe the code

differences between and motivations for each program version. We discuss participants’ most

common errors, and contrast performance results between versions.

5.2.1 between

The between programs were intended to test the effects of pulled-out versus inline functionality

(i.e., putting code into functions versus repeating it). In both versions, two lists are filtered and

printed, and then the common elements in the original lists are printed. The functions version

(Appendix A.1.1) contained two functions (between and common), corresponding to the filtering

and intersection operations performed on the two lists. The inline version (Appendix A.1.2) did

not contain any function definitions, repeating code instead.

We found that the functions version had a significantly higher median output distance
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(U = 2265, p < .05), though the effect size was small (r = 0.16). This means that participants in

general gave slightly more correct responses on the inline version. We expected that having the

filtering and common operations pulled out into reusable functions would benefit experienced

programmers, who could quickly chunk the definitions and then interpret the main body of the

program. The opposite appears to be the case, as there was a significant interaction between years

of programming experience and program version (F(3, 145) = 3.057, p < .05), with experience

hurting and inline helping. It may be that experienced programmers were more likely to make

incorrect assumptions in functions version because the between and common operations were

abstracted and physically distant. The inline version, however, may have facilitated a more literal

reading of the program, as a novice was likely to do in both cases. Again, effect sizes were small, so

these results may not generalize.

But how did expertise specifically impact response correctness? We found that more experienced

programmers were more likely to make a very specific error, regardless of version. In

approximately 41% of between trials, the response in Listing 1.

[8, 7, 9]

[1, 0, 8, 1]

[8]

Listing 1: Incorrect response for between programs. The final line should be [8, 9, 0].

The last line is incorrect, and should be [8, 9, 0] instead. More experienced programmers gave

this response more often, with a significant logistic regression coefficient of 0.25 (p < .05). An

informal, post-experiment interview with one participant suggests a plausible explanation: the

common error response is correct if we mistakenly assume that the common operation is

performed on the filtered lists instead of the original lists (x and y). Experienced programmers may

be expecting the high-level behavior of the program to be FILTER LIST, FILTER LIST, INTERSECT

FILTERED LISTS rather than what the code really says: FILTER LIST, FILTER LIST, INTERSECT

ORIGINAL LISTS. Our interviewee summed up the reason for their mistake: “why would you

bother filtering the lists if you don’t use the results?” This was unexpected, and suggests that

between may be better placed in the “expectation violations” category rather than “physical

characteristics of notation”.
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Less experienced programmers were expected to take more time on the functions than on the

inline version due to the need to refer back to the functions often. We did not observe this in the

data and, in fact, we did not find a significant difference in any of the other performance metrics

between versions.

5.2.2 counting

The counting programs tested the effects of whitespace on the grouping of statements in a for

loop. Python does not have a keyword or delimiter for the end of a block because indentation is

mandatory. Both versions of counting did the same thing: print “The count is i” and “Done

counting” for i ∈ [1, 2, 3, 4]. While the nospace version (Appendix A.2.1) had the for loop

declaration and the two print statements in the body on consecutive lines, the twospaces version

(Appendix A.2.2) added two blank lines between the first and second print statement. Because

Python is sensitive to indentation, this did not change the semantics of the program (i.e., both

print statements still belonged to the for loop).

We saw a stark contrast in correct responses between versions. Approximately 60% of the

twospaces responses failed to group the second print statement (“Done counting”) with the for

loop. The effect is easily visible in the output distance distributions (Figure 15), with the peak

around 0.4 in twospaces corresponding to these errors. Surprisingly, Python experience and

overall programming experience did not have a significant effect on the likelihood of making this

mistake!

Figure 15: Grade distributions for counting programs.

Whitespace was not the only contributor to the incorrect grouping of the final print statement.

Approximately 15% of responses in the nospace trial contained this same error, despite there being
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no whitespace between lines in the for loop. Even with no effects of physical notation, there is still

an expectation violation in the code: the final print statement says “Done counting,” but this text

is repeated for every loop iteration in the correct output. By mentally moving the print statement

outside of the loop body, the (incorrect) output makes much more sense:

The count i s 1

The count i s 2

The count i s 3

The count i s 4

Done counting

So we have two likely contributors to the large percentage of errors in the twospaces version:

whitespace (physical notation) and non-sensical output (expectation violation). While we expected

both, we did not expect to have no effect of experience (Python and overall programming). For

such a simple program, this is quite surprising, and perhaps indicative of the need for an “end of

block” keyword or delimiter in the language.

5.2.3 funcall

The funcall programs each performed a compound calculation using a single, simple function

f (x) = x + 4 (Appendix A.3). The calculation, f (1)× f (0)× f (−1), either had no whitespace

between terms (nospace version), a single space between all tokens (space), or had each call to

f (x) bound to a variable before completing the calculation (vars). We expected to find an effect on

trial duration and possibly calculation errors, with more whitespace facilitating faster and more

correct trials. In the vars version especially, we expected having the calculation broken out into

multiple, named steps (i.e., x, y, z) would ease participants’ mental burden.

Surprisingly, we did not find a difference between any of the three versions for any of the

performance metrics. Participants performed equally well despite differences in whitespace and

the use of variables for intermediary calculation steps. Approximately 89% of trials were correct for

the funcall programs, above the average of 75% for all 10 program bases. For the 11% of incorrect

trials, the two most common responses were 0 and −60. We hypothesize that these responses

correspond to the incorrect assumption by participants that f (0) = 0 and f (−1) = −3. Together,
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though, these two types incorrect responses constituted only a half a percent of the total funcall

trials, so they do not provide strong evidence for a generalizable pattern in the data.

5.2.4 initvar

The initvar programs each contained two accumulation loops: one performing a product, and the

other performing a summation (Appendix A.4). In the good version, both loops were intended to

meet expectations; the product loop had an initial value of 1, and the summation loop had an

initial value of 0. The onebad version, however, started the summation loop at 1 (an off-by-one

error). The bothbad version contained the same error, and also started the product loop at 0

(making the final product 0). We expected these “bad” versions to violate participant expectations,

possibly more so in experienced programmers. More errors were expected in the onebad version

relative to good, and even more errors were expected in the bothbad version.

Our expectations were violated by the actual results. We did not not observe a significant

difference in output distance or likelihood of a correct response between program versions. In fact,

the only significant difference between versions came from response proportion (Figure 16). After

a Kruskal-Wallis H test (H(2) = 16.72, p < .001), a pair-wise Mann-Whitney U test (with a

Bonferroni correction, α = 0.05) revealed that both the good and onebad versions had significantly

lower response proportions than bothbad (10-20% lower).

Figure 16: Response proportion distributions for initvar programs.

This result can partially be explained by participants quickly noticing that the first loop will result

in a being 0, and short-circuiting the calculation. By typing a “0” early in the trial, the response

proportion metric would be inflated, assuming they spent more time elsewhere. Indeed, we did not

observe a significant difference in trial duration between versions, suggesting that bothbad
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participants took the same amount of time as others. The keystroke coefficient and response

corrections metrics did not differ either, so bothbad participants did not spend their extra response

time making corrections. Instead, the data suggest they either took longer on the second loop, or

perhaps reviewed their quick response to the first loop before completing the trial. A more

in-depth analysis of the individual keystrokes is needed to answer these questions.

5.2.5 order

The order programs contained three functions, f (x), g(x), and h(x). While f and g added 4 and

doubled x respectively, h computed f (x) + g(x) (Appendix A.5). In the main body, all three

functions were called on x = 1 in the same order: f , g, h. The order in which the three functions

were defined was either in the called order (inorder), or in a slightly different order (shuffled) –

h, f , g. With this simple manipulation of notation, we expected participants to exhibit a different in

trial durations. The shuffled version had an incongruent definition and call order, so we expected

participants to take longer on this version due to a less efficient visual search.

Figure 17: Duration distributions for order programs.

Our hypothesis was supported by the data, though the effect size was small (Figure 17). We

observed a significant difference in log trial durations between the inorder and shuffled versions

(U = 2530.0, p < .05). The difference in duration medians was fairly small (0.1 log seconds), as was

the rank biserial correlation (r = 0.18). Despite the small effect size, it is still impressive to observe

a significant result with such a small change to the code! We did not observe differences between

versions in any other performance metric. Because approximately 93% of participants provided the

correct response, we are confident the incongruent definition/call order produced an effect purely

on visual search efficiency. An in-depth analysis of the collected eye-tracking data is needed to

36



further support this hypothesis.

5.2.6 overload

The overload programs tested the effects of operator overloading (Appendix A.6). Each program

had three blocks of code, each with two variable assignments followed by an operation with those

two variables (and a printing of the result). The final block always assigned a string “5” and string

“3” to variables e and f, and then printed e + f. The preceding two blocks either had exclusively

multiplications (multmixed), additions (plusmixed), or string concatenations (strings). We

expected plusmixed to give participants the most trouble, both in terms of error and additional

time, because the + operator was used to mean both addition and concatenation. Additionally, we

expected participants to be faster at the strings version because no numerical operations were

present in the program, thus there should be no priming for the numeric overload of +.

The results surprised us. We saw no significant difference between versions in terms of errors or

response proportion. Approximately 11% of responses incorrectly computed 5 + 3 = 8 for the

final code block instead of "5" + "3" = "53", but any difference between versions was not

significant. We did, however, observe the same pattern across trial duration, keystroke coefficient,

and response corrections: the strings version was significantly different from the multmixed

version, but not plusmixed.

A Kruskal-Wallis test followed by a Mann-Whitney U test (with correction) showed that strings

had a significantly higher log duration than multmixed (U = 1095.5, p < .01) with a decent effect

size (r = 0.31). It’s tempting to explain this simply by noting that the strings version requires

more keystrokes to get the correct response than both of the others. However, the duration (and

keystroke coefficient, response proportion) metrics are significantly different only between

strings and multmixed (not strings and plusmixed, nor multmixed and plusmixed). So we can

see indirectly that the use of the overloaded + in plusmixed has had an effect – unlike multmixed,

this version is not significantly different than strings.

How did the use of an overloaded operator impact participants in plusmixed? This is difficult to

answer precisely because the statistics only allow us to compare with the other versions. We know

that plusmixed is not significantly different strings in terms of trial duration, even though the
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Figure 18: Duration distributions for overload programs.

only difference multmixed and plusmixed is the numeric operator used in the first two code blocks.

This leads us to believe that participants were slowed down slightly in the plusmixed version, but

not enough to be significantly different from multmixed. Indeed, the median log trial duration for

plusmixed (10.29) is sandwiched between multmixed (9.99) and strings (10.43) – see Figure 18.

We see the same pattern with keystroke coefficient and response corrections: plusmixed is between

the other two, but not significantly different (while multmixed and strings are). Thus, operator

overloading appears to decrease performance (excluding response errors), but not enough to

completely differentiate it from a nearly identical program without overloaded operators.

5.2.7 partition

The partition programs each iterated through a list of numbers and printed the number plus a

“high” or “low” designation on each line (Appendix A.7). Numbers less than 3 were low, and

numbers greater than 3 were high (3 itself was skipped). The balanced version iterated over

[1, 2, 3, 4, 5], producing an equal number of low and high numbers. In contrast, the unbalanced and

unbalanced pivot versions iterated over [1, 2, 3, 4], printing two low and only one high. The

unbalanced pivot version used variable pivot = 3 instead of the constant 3 in its if statements.

We expected participants to perform better (in terms of error rates) on the balanced version

because of the symmetric low and high values. This symmetry was expected to aid in the

recognition of this program’s purpose: partitioning a list based on a pivot element. For the other

versions, we expected unbalanced to have the highest error rates, with unbalanced pivot having

slightly fewer errors due to the pivot element being explicitly named.

We were surprised to find no significant differences between versions across all performance

metrics. Approximately 70% of responses were correct, and we did not observe a systematic
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difference in errors between versions. An ordinary least squares regression did show a very small,

but significant, effect of programming experience on output distance (F(1, 157) = 5.07, p < .05).

The coefficient was negative (−0.0038), indicating that more experience decreased errors, but is far

too small to make any broad claims.

The most common error across all versions was leaving the number off of each line (i.e., assuming

print i, "XXX" was just print "XXX"). This error occurred in approximately 19% of responses,

but did not seem to occur more in any particular version. Around 7% of responses included an

extraneous line for 3, but there was not a significant bias for any version or whether this number

was marked high or low.

5.2.8 rectangle

The rectangle programs (Appendix A.8) computed the area of two rectangles, represented either

as a collection of four x/y variables (basic), a Rectangle object (class), or a pair of (x, y)

coordinates (tuples). We expected the class version to take the most time because it is longer and

significantly more complex according to our metrics (Figure 19). The basic version was expected

to take the least amount of time due to its use of simple variables for rectangle representation.

Version LOC CC HE

basic 18 2 18801
class 21 5 43203
tuples 14 2 15627

Figure 19: Complexity metrics for rectangle program versions. Metrics are lines of code (LOC), cyclomatic
complexity (CC), and Halstead effort (HE).

Interestingly, we did not observe a different between versions for any of the performance metrics.

In fact, this set of programs had the highest percentage of correct answers (about 96%) of any other

program base. This is surprising from a complexity metrics perspective, given that the rectangle

programs were some of the longest ones in our entire set (see Table 21 in the Appendix). These

results are unsurprising, however, when we consider our participant demographics: programmers

with a mean age of 28. Our participants have all likely had experience with geometry, and could

therefore leverage a large amount of domain knowledge when evaluating the rectangle

computations. In retrospect, we should have introduced a calculation bug into these programs’ area
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functions and seen if there was a 96% error rate instead! As it stands, rectangle demonstrates how

domain knowledge can overwhelm differences in representation and notation.

5.2.9 scope

The scope programs applied two functions to a variable named added: one named add 1, and the

other named twice (Appendix A.9). Both of these functions produced no visible effects – they did

not actually modify their arguments or return a value. In the samename version, we reused the

variable name added for each function’s parameter name. For the diffname version, however, we

used a different parameter name for both (num). Because the add 1 and twice functions had no

effect, the main added variable retained its initial value of 4 throughout the program (instead of

being 22). This directly violates one of Soloway’s Rules of Discourse [89]: do not include code that

will not be used.

We expected participants to mistakenly assume that the value of added was changed more often

when the parameter names of add 1 and twice were both also named added (i.e., in the samename

version). The actual results were much more interesting: around 48% of responses were incorrect,

regardless of version! There were no significant differences between versions across all

performance metrics, but we did observe an effect of experience. A logistic regression predicting a

correct response from years of Python experience yielded a significant effect (intercept = −0.37, OR

= 1.25, p < .05). Because the odds ratio (OR) is greater than 1, we can infer that more Python

experience helped increase the odds of a correct response. This same effect was not observed for

overall programming experience, however.

Although anecdotal, our experience with participants in the eye-tracker may help explain why

Python experience, and not overall programming experience, aided participants. While evaluating

one of the scope programs, several participants paused and asked the experimenter (who was

behind a partition) whether the Python language was “call by value” or “call by reference.” In

short, this is the difference between add 1(x) only being able to modify a copy of x (call by value) or

the original x (call by reference). Python exhibits both behaviors, depending on what x contains. In

the case of the scope programs, added was an integer, so neither function could possibly modify it4.

4Were added to be list or dictionary, then that list or dictionary could be modified by a function. Which object the
added variable points to, however, could not.
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Python’s “call by” behavior is not unusual with respect to most commonly-used programming

languages. We hypothesize that participants had strong expectations against seeing unused code

(Soloway’s rule), but also recognized that the functions did not return values. Thus, they had to

resolve the conflict by appealing to their knowledge of the Python language itself. The fact that

almost half the responses were incorrectly 22, however, demonstrates the power of Soloway’s rule.

If our hypothesis is correct, many highly-experienced programmers were more willing to bend the

language’s rules than accept code that does nothing.

5.2.10 whitespace

The whitespace programs print the results of three simple linear calculations (Appendix A.10). In

the zigzag version, the code is laid out with one space between every mathematical operation, so

that the line endings have a typical “zig-zag” appearance. The linedup version, in contrast, aligns

each block of code by its mathematical operators, nicely lining up all identifiers. We expected there

to be a speed difference between the two versions, with participants being faster in the linedup

version. When designing the experiment, most of our pilot participants agreed that this version

facilitated reading, but the data did not support this claim.

Approximately 87% of responses were correct, and there were no performance differences between

versions. Using an ordinary least squares regression, we did find a significant effect of years of

Python experience on log trial duration (F(1, 157) = 5.247, p < .05). The coefficient (−0.043) is very

small, though, even for the log millisecond scale. It is also not terribly surprising that more

experienced Python programmers were a bit faster in general.

When inspecting the kinds of errors participants made (only about 13% of responses), we noted

that a specific kind of error only occurred in the zigzag version. Five participants (about 6% of

zigzag responses) answered 10 and 15 for the last two y values rather than the correct values of 6

and 115. These are the answers that would be obtained if a participant executed the multiplications

before the additions, contra the established of order of operations of Python and mathematics more

generally. Effects of spacing on the perceived order of arithmetic operations have been studied

before [43], and our results suggest that spacing in code layout may also have an impact on order

5Confusingly, two of these participants provided the correct first line (0 1), while the other three were consistently
wrong with (0 5).
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of executed operations.

5.3 By Experience and Correctness

How does performance vary with expertise, and whether or not the response was correct? We

analyzed all trials grouped by the correctness of the response, and separately by whether or not the

participant was considered an expert. Expertise was defined as having 5 or more years of Python

experience, or having 10 or more years of overall programming experience. In general, we

expected experts to perform better across individual performance metrics (fewer errors, lower trial

durations, etc.). When looking at correct versus incorrect trials, we expected to see distinct

differences in groups of performance metrics – e.g., longer trial durations, but fewer response

corrections.

5.3.1 Correct/Incorrect Trials

While the majority of trials had a correct response (approximately 75%), there were still significant

performance differences between correct and incorrect trials. Trial durations did not significantly

differ, but we did observe the following differences in other performance metrics:

• Keystroke Coefficient - correct trials had significantly smaller keystroke coefficients
(U = 216, 622.5, p < .05, r = 0.073).

• Response Proportion - correct trials had significantly smaller response proportions
(U = 216, 770.5, p < .05, r = 0.073).

• Response Corrections - correct trials had significantly fewer response corrections

(U = 208, 360.0, p < .01, r = 0.11).

From the above observations, we could infer that participants providing a correct response tended

to spend more time reading before responding (smaller response proportion), and less time fixing

mistakes (fewer response corrections, smaller keystroke coefficient). Unfortunately, the effect sizes

(r) were below our threshold of 0.2 for a meaningful relationship (see Section 4.4), so our

confidence in the real-world impact of these inferences is reduced.
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5.3.2 Expert/Non-Expert Trials

We divided our participants into experts and non-experts depending on their Python and overall

programming experience. Participants with 5+ years of Python experience or 10+ years of

programming experience were considered to be experts in the scope of our task. Given that our

programs did not stray from material covered in a first year Python course, we are confident in this

classification. We had 52 expert participants and 110 non-expert participants in the experiment,

and observed the following performance metric differences between expert and non-expert trials:

• Output Distance - expert trials had significantly lower correct output distances
(U = 255, 331.0, p < .01, r = 0.06).

• Log Duration - expert trials had significantly lower log trial durations

(U = 238, 531.5, p < .001, r = 0.12).

These observations were surprising to us for several reasons. First, as with the correct/incorrect

trial performance differences, the effect sizes were below our threshold for a meaningful

relationship (0.2). With such strong conditions for being considered an expert, we expected to

observe much stronger performance differences. Second, we did not observe any significant

differences in the other performance metrics between expert and non-expert trials (keystroke

coefficient, response proportion, response corrections). We hypothesize that this is due to (1) the

simple nature of our programs in general, and (2) looking at all trials together rather than

separated by program base/version.

When comparing trials by program version, we do observe strong differences due to

Python/programming experience (Section 5.2). Across all trials however, the effect is likely

diminished due to “easy” programs on which experts and non-experts perform similarly. Indeed,

half of the programs bases had over 75% correct responses (overload, whitespace, funcall,

order, and rectangle). With more difficult programs, we would expect to observe much stronger

distinctions between experts and non-experts across all trials.
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6 Part 1: Discussion

In Section 5, we analyzed trials in the eyeCode experiment by grouping them in various ways, and

then comparing performance metrics between groups. We analyzed trials grouped by program

base (Section 5.1), by program version (Section 5.2), and by response correctness/participant

expertise (Section 5.3). Below, we relate these results to each of our three research questions:

• RQ1: How are programmers affected by programs that violate their expectations, and does
this vary with expertise?

• RQ2: How are programmers influenced by physical characteristics of notation, and does this
vary with expertise?

• RQ3: Can code complexity metrics and programmer demographics be used to predict task

performance?

6.1 Expectation Violations

We hypothesized that expectation-violating programs would result in slower response times and

higher error rates, perhaps more-so for experience programmers. Specifically, we expected the

following program versions to violate participant expectations:

base version(s) violation

initvar onebad, bothbad Wrong starting value and off-by-one error.

overload plusmixed Plus operator used for addition and concatena-

tion.

partition unbalanced, unbalanced pivot Unequal number of “low” and “high” outputs.

scope diffname, samename Included code does not produce any effect.

Of these, only scope produced an expected effect (high error rates). This was especially interesting

because some programmers reported questioning the language semantics rather than accepting a

program with (effectively) useless code in it (see Section 5.2.9 for details). As predicted by previous

research [89], this effect was modulated by experience; more experienced Python programmers less

likely to make the mistake. A similar effect was observed in partition (programming experience
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reduced errors), but there was no difference between versions. A more dramatic effect of

experience – specifically domain knowledge – was seen with all three rectangle programs.

Despite notational differences, we did not observe any difference between versions. In fact, the

rectangle programs had the highest percentage of correct responses for any program base (96%);

a testament to the utility of domain knowledge when the code and domain are congruent6.

It’s not unusual to see experience positively correlated with performance, but this is not a

necessary relationship. For example, the most common error made on the between programs was

significantly more likely to occur for more experienced participants (Section 5.2.1). Distortions of

form and content during the recall of programs by experienced participants have been observed in

previous experiments [27]. With between, experience was likely correlated with a distortion of

content; participants appeared to ignore the code in front of them and do what “made sense”

instead. Something similar may have occurred during trials with the nospace version of counting.

Despite being a perfect example of a Python for loop, a minority of responses (15%) contained

only a single “Done counting” line at the end. As with between, this indicates that participants

interpreted the program’s intention rather than its literal code.

6.2 Physical Notation

The physical aspects of notation, often considered superficial, can have a meaningful impact on

performance. We expected to see differences in trial duration due to notational effects (except for

counting). Specifically, the following program versions were expected to produce notational

effects:
6We expect that introducing a calculation error into the area function would strongly increase error rates.
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base version(s) notation

between functions Filtering/intersection operations pulled out into func-

tions.

counting twospaces Extra vertical whitespace between loop body state-

ments.

order shuffled Incongruent function definition and call order.

rectangle basic, tuples, class Different data structure representations for rectangle.

whitespace linedup Code is horizontally aligned by mathematical opera-

tors.

The twospaces version of counting demonstrated that vertical space is more important then

indentation to programmers when judging whether or not statements belong to the same loop

body. Programmers often group blocks of related statements together using vertical whitespace,

but our results indicate that this seemingly superficial space can cause even experienced

programmers to internalize the wrong program. As mentioned in the previous section, at least

some of this effect can be attributed to an expectation violation due to the words “Done counting”

in the final print statement. Indeed, our counting results could be seen as additional evidence

that high-level expectations drive performance more than notation. The rectangle programs are

another potential example – we did not observe any performance differences between versions,

most likely due to the overwhelming influence of domain knowledge.

We observed small notational effects on trial duration in the order and whitespace programs.

Participants were slowed down in the shuffled version of order, providing evidence of our

hypothesis that the congruence of function definition and calling order would aid in visual search.

Python experience helped participants on both versions of whitespace, but the zigzag version

contained a handful of incorrect responses indicative of the wrong order of operations. While this

result was not statistically significant, it suggests a path for future work in the study of notational

effects in programming. We expect to see an overlap with research on how physical spacing

influences the perceived order of operations in arithmetic [43].
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6.3 Predicting Performance

Our final research question asked if trial performance could be predicted using complexity metrics

from the program’s source code and demographics from the participant. For basic correlations, we

found moderate to strong correlations between our keystroke metrics (keystroke coefficient,

response proportion, response corrections) and the number lines/characters in the true program

output. Log trial duration was also found to be moderately correlated with lines of code and

Halstead effort. Surprisingly, correct output distance was not significantly correlated with any

single complexity metric.

Using a multiple-predictor linear model, we found that only keystroke coefficient and response

proportion had sizeable coefficients (Section 5.1). In both cases, the number of lines in the true

output was the strongest predictor. For keystroke coefficient, the relationship was negative – more

output lines decreased the metric (fewer unnecessary keystrokes). Response proportion increased

with output lines, which makes sense if participants began evaluating print statements as soon as

they were encountered.

We were surprised to see such small coefficients for the other performance metrics, especially

correct output distance and log trial duration. At a minimum, we expected Python and/or

programming experience to be a strong predictor of correct output distance: more experience

should reduce errors. Similarly, we expected lines of code to strongly predict log trial duration:

more code should take longer to read. In both cases, however, our models did not reveal a strong

(linear) relationship. Results improved for correct output distance when we included other

performance metrics as predictors, but the coefficients were still small relative to the range of the

response variable. It is possible that a non-linear model could provide a better fit to the data, but

we do not have a strong theoretical reason to expect specific interactions between predictors.

We investigated a more coarse-grained performance metric in the last part of Section 5.1: whether

or not a trial had a correct response. Using a collection of binary classifiers trained on all trials with

cross-validation, we found that the Random Forest classifier performed well; achieving a mean

AUC score of 0.86 (with a max of 0.94). This means that the probability of ranking a positive

instance above a negative instance is approximately 0.86 – much better than chance. We examined

the relative importance of each predictor (feature) for this classifier, and found that keystroke
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coefficient, response proportion, and log trial duration were at the top. Thus, it appears that the

correctness of a trial response can be well predicted in our data set, but not by complexity metrics

and demographics alone7. By considering the length of a trial and various keystroke metrics, it

appears we can strongly predict whether or not a participant’s response was correct.

7 Part 1: Conclusion

In this part, we presented an experiment in which programmers predicted the output of 10 Python

programs (drawn from a set of 25 programs). The performance of participants on each trial, a

single program prediction, was quantified using a collection of performance metrics. Small

differences between versions of each program were predicted to affect participants due to either

expectation violations or attributes of physical notation. We observed both kinds of effects, though

not always where they were expected.

The scope and counting programs produced the largest error rates, closely followed by between.

These errors were driven by expectation violations entirely for scope, and partially for counting

and between. While it’s clear to an outside observer that the code and the program’s intention

differ, many participants did not notice. Interestingly, we observed Python/programming

experience helping (scope), hurting (between), and having no effect (counting). The scope results

align with previous research on the so-called “Rules of Discourse” for programming [89], but the

other results are more reminiscent of Schank and Abelson’s scripts [80]. Participants incorrectly

responding to the between and counting programs appeared to be inferring high-level intentions,

and ignoring bottom-up cues (e.g., indentation) that did not fit the “script.”

Notational effects were observed in counting and order, with the strongest effects showing up in

the former. Python does not include an ending delimiter for blocks like many other languages (i.e.,

an end keyword or closing brace), so indentation is the only visual cue for statement grouping. Our

experiment suggests that this visual grouping can be manipulated by simply adding empty vertical

whitespace around grouped statements. There are many open questions, however, and we must be

cautious in drawing broad conclusions from this one experiment. Though much weaker, the

observed notation effect in order is also of interest. The two order programs are virtually identical,

7Training the Random Forest classifier without performance metrics results in a mean AUC score of 0.68.
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but the results suggested an implicit expectation that the methods be called and defined in the

same order8. A more spatially-oriented complexity metric, such as Douce’s FC metric [32], may be

able to quantify these types of nuances.

Lastly, we found that predicting performance could only be done for the binary correct/incorrect

response metric, and only if other performance metrics were included as predictors. Were our

programs more difficult, or our task different, we would expect complexity metrics and

demographics to drive performance more than we observed in this experiment.

7.1 Future Work

During the course of the experiment, Bloomington participants were seated in front of a Tobii X300

eye-tracker. We plan to analyze this eye-tracking data, and correlate it with our findings here.

Specifically, we hope to see how code features and experience affect the visual search process and,

by proxy, program comprehension. We will also be investigating whether or not our performance

metrics can be predicted from eye-tracking metrics, such as mean fixation duration and spatial

density [71]. Because we capture keystrokes in real time, we have the opportunity to observe

participants’ gaze patterns as they are responding and (perhaps) correcting those responses.

For future experiments, we would like to include other languages and more realistic programs

(e.g., multiple files and modules). Our work to date has focused exclusively on reading short

Python programs, so a similar experiment where participants write short programs may prove

insightful. Task performance in such an experiment may be more difficult to quantify, however.

Our task has a well-defined expectation (predict the program’s printed output), whereas asking

participants to write a program according to some specification may be too open-ended. Still,

observing participants as they read a specification and construct/modify a program would

provide a window into the use of programming plans: hypothesized mental schemas that

programmers use to read and write programs [73].

8It’s possible that the alphabetic names of the methods provided this implicit ordering.
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Part 2

eyeCode: An Eye-Tracking Experimental Framework for

Program Comprehension

Abstract

Psychologists and computer scientists have studied the cognitive aspects of programming

for nearly thirty years. Eye-tracking has gained popularity recently as a tool for gaining insight

into programmer’s cognitive processes while they comprehend programs. Both low-level eye

movement metrics, such as fixation duration, and high-level metrics like line to line transition

probabilities, provide rich alternatives to standard think-aloud experiment protocols. We

present an experiment in which programmers predict the output of ten short Python programs,

each with alternative versions. We use eye movements to discover important code

elements/lines, characterize evaluation strategies, and investigate the source of participant

errors. In addition, an open source data analysis library is introduced that provides specialized

metrics, plots, and statistics for eye-tracking program comprehension experiments.
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8 Part 2: Introduction

The cognitive aspects of programming have been studied by psychologists and computer scientists

for nearly thirty years [29], culminating in the development of several cognitive models of

program comprehension (e.g., [96, 82, 16, 30]). Though useful as tools to describe and reason about

program comprehension, these (mostly qualitative) models cannot quantitatively predict human

behavior when comprehending a specific program. The development of a quantitative cognitive

model would represent a milestone in the understanding of program comprehension, and facilitate

the semi-automated analysis of design alternatives for programming languages and integrated

development environments (IDEs).

Recently, the use of eye-tracking has become prevalent in the study of program

comprehension [97, 4, 14]. Eye movements are a rich data source, and have been strongly linked

with visual attention and cognitive processes [75]. By collecting and analyzing eye movement data

from developers during a specific programming task, researchers hope to gain insight into the

cognitive processes programmers use to read and understand programs. When combined with

other sources of data, such as responses to questionnaires, task timing, response accuracy, and

participant experience, the space of possible cognitive models can be strongly constrained. Our

programming task, predicting a program’s printed output, is a starting point for the development

of a cognitive model. This model will predict human behavior when interpreting simple Python

programs.

8.1 The Experiment and Research Questions

We present an experiment in which 29 participants with a range of Python and overall

programming experience predicted the output of ten small Python programs. Most of the program

texts were less than twenty lines long and performed simple calculations (e.g., computed the area

of a rectangle). We used ten different program bases, each of which had two or three versions with

subtle differences. Participants were randomly assigned a version of each program, and performed

the experiment in front of a Tobii TX300 free-standing eye-tracker (recording at 300Hz). We

computed a variety of eye movement metrics, and produced high-level static and dynamic

summary statistics of our data. These metrics and statistics, such as time spent looking at
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particular code elements and transition probabilities between code lines, helped us answer several

research questions.

First, how does the eye movement data from our experiment compare to other eye-tracking

program comprehension experiments? Our task, output prediction, is relatively unique

compared to other studies. Locating bugs and answering comprehension questions are the most

common tasks (see [14] for an brief survey). Like many other eye-tracking studies, we make use of

common fixation metrics and relationships between areas of interest (AOIs) to summarize our data.

In addition, we incorporate specific program comprehension measures – e.g., proportion of lines

reviewed in the first 30% of a trial [97] – and compute fixation metrics over rolling time windows.

Second, can aggregate eye movement metrics and summary statistics be predicted from

textual/syntactic features of code? Readability studies of code have found that both textual

features (whitespace, word/line length), and syntactic features of code (identifier/keyword count)

can influence assessments of the perceived complexity of the code and reading behavior [11, 22].

By linking code features with eye movements, it may be possible to predict how difficult a specific

program is to read and comprehend. Another benefit of these studies is the contribution of

valuable empirical data towards the investigation of programming language usability [91].

Language usability studies are rare, and the addition of new language features seldom involves

controlled human experiments. A quantitative understanding of program comprehension would

be a boon to researchers and members of industry who are examining language design alternatives.

Finally, do differences between versions of the same program, or demographics/performance

of the participant, influence eye movements? Eye movement differences have been previously

observed between expert and novice programmers during comprehension and debugging

tasks [5, 7]. While more experienced programmers tend to perform better, researchers have noted

differences in strategies between more and less experienced developers. In our experiment, we

consider both a participant’s Python and overall programming expertise, as well as which version of

a program they were asked to interpret. Some program versions were designed to reward syntactic

and semantic knowledge of Python (e.g., counting, scope), while others were intended to expose

performance differences (e.g., rectangle, whitespace). When analyzing our results, we separated

trials for some programs by response correctness, and compared eye movement metrics between

the two groups.
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8.2 Outline

This chapter is organized as follows. Section 9 provides background on eye-tracking in general and

as it has been applied specifically to program comprehension. Our experimental methodology is

introduced in section 10 along with the metrics and data transformations used in our analysis.

Section 12 presents a detailed analysis of our data, with section 12.2 breaking down results by

program base. The discussion in section 13 connects the details of our results with the three

research questions in this section. Lastly, section 14 concludes and considers future work.

9 Part 2: Background

Although it has only recently been applied to program comprehension, eye-tracking has existed in

one form or another for over a century. In this section, we start by reviewing the mechanisms of

modern eye-trackers and the assumptions made when analyzing eye movement data. Next, we

describe how eye-tracking has been incorporated into studies of program comprehension. Based

on these studies, we outline expectations for the results of our experiment

9.1 Eye-tracking Methodology

Researchers have collected eye movement data for over one hundred years, usually to study

natural language reading behavior [72]. Modern eye-trackers tend to use an infrared camera and

LED to detect the pupil center and corneal reflection. With some calibration and a bit of

trigonometry, an individual’s “point of regard” can be determined fairly accurately [71].

Eye-tracking hardware can be broadly classified as free-standing or head-mounted. Free-standing

eye-trackers function much like a webcam attached to a monitor. The participant is free to move

about, though data accuracy is lost if their head moves too far outside of an expected range 9.

Head-mounted eye-trackers solve this problem by attaching the camera to the participant’s head,

allowing more range of motion. This increases data accuracy, but may be distracting or otherwise

interfere with the experiment.

Raw eye movement data, called gaze points, are processed into fixations and saccades by software

9A chin rest can help keep the participant’s head still, but forces them to perform the experiment with a potentially
unnatural posture.
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outside the eye-tracker – typically provided by the hardware vendor. A fixation occurs when the

eye maintains its gaze on a particular location for an extended period of time. Fixations last around

a few hundred milliseconds, and are broken up by saccades: rapid jumps from one fixation

location to another 10. For a given task, fixations are mapped to specific areas of interest (AOIs):

relevant regions of the task environment. AOIs are often individual words for reading tasks, or

specific objects in a scene for image-based tasks. A series of fixations from one AOI to another is

called a scanpath, and can be used to compare participants’ task strategies [75].

A variety of eye-tracking metrics exist to quantify eye movement behavior. Fixation counts and

duration for each AOI are common metrics for determining which words or objects participants

considered most important. There is a crucial assumption being made here, called the eye-mind

hypothesis – that point of regard and visual attention are strongly correlated. This hypothesis lies

at the heart of most eye-tracking research, and is widely accepted by the eye-tracking community.

It should still be kept in mind when interpreting results, however. Other eye movement metrics,

such as the density of fixations in a given area or the amplitude of saccades, can be used to infer

the quality of information cues in the task environment. All of these metrics, of course, depend on

the details of the software used to transform gaze points into fixations and saccades. Like the

eye-mind hypothesis, these details are potential threats to the validity of experimental results.

9.1.1 Benefits and Potential Problems

Eye movement data provides rich, fine-grained physiological data for visually-intensive tasks.

With the eye-mind hypothesis, this allows researchers to gain a unique insight into a participant’s

cognitive processes with high temporal resolution. Other experimental protocols may provide

similar insights, such as “think aloud” in which a participant narrates their activity during the task.

The data from such protocols are necessarily mediated by consciousness, however, and therefore

may not reflect the details of cognitive processes outside of conscious awareness [65]. To the extent

that the task at hand depends on these types of processes, eye movements have an advantage.

Additionally, the density of fixation and saccade data make it ideal for statistical methods, both

within and between participants.

10Besides alternating between fixations and saccades, humans and other animals have a “smooth pursuit” visual mode
in which the eyes smoothly following a moving target [17].
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There are potential problems in the collection and interpretation of eye movement data. The

accuracy and precision of fixations and saccades strongly depends on the eye-tracking hardware

and experience of the data collector [66]. In some cases, a participant’s eye color, contacts, and eye

make-up have been found to decrease data accuracy. Even under ideal collection conditions, there

is also some guesswork involved in the transformation of raw gaze data into fixations/saccades,

and again in the mapping of fixations to areas of interest (AOIs). Using different methods for each

data transformation step may lead to very different conclusions, especially when using a

between-subjects experimental design with few participants (common in many eye-tracking

studies). Finally, comparing eye movements between participants may require additional data

massaging or quantization when looking behaviors are highly individualized. For example, the

precise fixation order of code lines in our task varied considerably between participants, leading us

to favor the comparison of high-level metric between groups of participants instead (see

Section 12.1.3 for details).

9.2 Reading and Program Comprehension

Within the last decade, eye-tracking has become more prevalent in studies of program comprehension.

In these studies, programmers perform a variety of tasks on source code, such as locating bugs [97],

predicting output [46], and answering comprehension questions [14]. Participants’ eye movements

during program comprehension are used to infer the effects of visualizations [4], expertise [22],

pair programming [84], and other environmental factors.

Bednarik et. al performed extensive eye-tracking experiments with expert and novice

programmers, focusing on the utility of program visualizations alongside source code [4]. Besides

task performance, they found differences between novices and experts in both low-level eye

movement metrics (mean fixation duration), and high-level looking behaviors (attention switches

between code and visualization). Experts, for example, attended to the source code more than

novices, and appeared to integrate more information between the different representations of a

program. An earlier paper by Bednarik also found that experts were more affected by being force

to use a restricted focus viewer (RFV) when viewing a program’s source code and alternative

graphical representation [6]. The RFV blurred the contents of the screen except for a small region
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controlled by the participant. In this paper, Bednarik et. al found that, while task performance did

not decrease, more experienced programmers switched visual attention between representations

less often when the RFV was active. Novices did not modify their behavior, however, suggesting

that experts were making heavier use of peripheral vision when RFV was not active.

Uwano et. al had participants review C source code to locate defects, and analyzed the resulting

patterns in their eye movements [97]. They observed a particular pattern, called scan, which

represents a preliminary reading of the entire program (12-23 lines long) from top to bottom. In

their experiment, approximately 73% of code lines tended to be fixated within the first 30% of a

trial. Participants who spent more time in this scan pattern were also more likely to detect the

defects in the program. We observed a similar scan pattern during some trials, but did not find a

correlation with task performance.

Busjahn et. al compared the behavior of programmers reading both Java source code and natural

language texts [14]. Significant differences were found in low-level eye movement metrics between

text types, such as mean fixation duration and regression rates 11. Substantial variation was also

found between participants and between texts of the same type (source code or natural language).

Additionally, the proportional fixation times for different categories of “words” in source code was

analyzed, normalized by number of characters 12. Out of keywords, identifiers, numbers, and

operators, Busjahn et. al found that keywords received the least amount of fixation time per

character. An earlier study by Crosby found similar results for keywords, though their other source

code categories differed [22]. We observed the same pattern for keywords, and found that lines

with mathematical operators or comparisons received the most fixation time (Section 12.1.2).

9.2.1 Expectations for Our Data

Based on the body of eye-tracking program comprehension study literature, we can form

expectations for our own experiment. These expectations may be violated, however, given the

uniqueness of our task. As mentioned previously, many eye-tracking experiments in this area ask

participants to debug or answer comprehension questions about programs. In contrast, our

participants were tasked with predicting the precise printed output of a program. Within the

11A regression occurs when a previously fixated word is fixated again.
12As noted by Busjahn et. al, normalizing by syllables or some other unit that can be processed within a single fixation

may be more appropriate.
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cognitive modeling subsection of program comprehension, programmers have demonstrated

significant differences in their recalled representations of programs based on the task at hand [28].

Specifically, a programmer’s “mental model” will differ if they’re asked to recall relevant portions

of a program for the purposes of documenting or summarizing versus modifying or reusing it. An

analogous difference may be expected when programmers are asked to answer comprehension

questions about, or literally evaluate, a program’s source code.

Assuming some similarity between our task and others, however, we should expect mean fixation

time to be related to experience [4], and to fall within the 300-400 ms range [14]. Regression rates

are also predicted to be in the 30% to 40% range, well above the typical 10% to 15% range for

natural language text [72]. When analyzing reading behavior, we should also expect the majority

of lines to be fixated in line order within the first 30% of the trial [97]. Finally, participants are

expected to fixate on more “complex” statements about twice as much as “simple” statements, and

to spend the least amount of time on keywords [22].

Next, section 10 introduces our experimental methodology. Section 12 then delves into the details

of our results. We analyze participants’ eye movements in terms of reading behavior, by program

base/version, and by participant demographics. Our data conformed to some of the expectations

in this section (e.g., keyword fixation time), but violated others (e.g., fixation duration and

experience). The discussion in section 13 considers reasons for these violations, and relates the

detailed results to our research questions.

10 Part 2: Methodology

We now introduce our experiment design and eye-tracking hardware. Section 10.3 describes the

process of transforming raw eye movement data into fixations, and mapping those fixations to

areas of interest. Lastly, section 10.4 provides definitions for each of the eye movement metrics

used in the analysis.

10.1 Experiment and Participant Demographics

We recruited 29 via e-mail and from an introductory programming class at Indiana University.

Participants were paid $10 each, and performed the experiment in front of an eye-tracker. All
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participants were screened for a minimum competency in Python by passing a basic language test.

The mean participant age was 27.3 years, with an average of 2.9 years of self-reported Python

experience and 9.4 years of programming experience overall. Most of the participants had a college

degree (86.2%), and were current or former Computer Science majors (65.5%). Figure 20 has a more

detailed breakdown of the participant demographics.

Figure 20: Demographics of all 29 participants.

The experiment consisted of a pre-test survey with questions about demographics and experience,

ten trials (one program each), and a post-test survey assessing confidence and requesting feedback.

The pre-test survey gathered information about the participant’s age, gender, education, Python

experience, and overall programming experience. Participants were then asked to predict the

printed output of ten short Python programs, one version randomly chosen from each of ten

program bases (Figure 21). The presentation order and names of the programs were randomized,

and all answers were final. No feedback about correctness was provided and, although every

program produced error-free output, participants were not informed of this fact beforehand. The

post-test survey gauged a participant’s confidence in their answers and the perceived difficulty of

the task overall.

We collected a total of 288 trials from 29 participants starting November 20, 2012 and ending
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Figure 21: Sample trial from the experiment (between inline). Participants were asked to predict the exact output
of ten Python programs.

January 19, 2013. Trial responses were manually screened, and a total of 2 trials were excluded

based on the response text. Participants were not constrained to complete individual trials or the

experiment in any specific amount of time. There were a total of twenty-five Python programs in

our experiment belonging to ten different program bases. The programs ranged in size from 3 to 24

lines of code, and did not make use of any standard or third-party libraries.

10.2 Eye-Tracking Hardware

The Tobii TX300 is a free-standing eye-tracker that collects gaze data at 300Hz, and averages an

error of around 0.04 degrees of visual angle for both eyes 13. The screen is 23 inches in size and

measures 557 mm across with a 1920x1080 maximum resolution. Before starting the experiment,

participants went through a brief calibration using the vendor-provided Tobii Studio software

package. Aside from being asked to sit about 65 cm away from the eye-tracker and not to move

their heads as much as possible, participants interacted with the TX300 as if it were a normal

computer.

We used Tobii Studio 2.2, a software package provided by Tobii with the eye-tracker, to do

calibration and to record/process raw gaze data into fixations and saccades. The TX300 records

raw moment-to-moment gaze points, which Tobii Studio collects and processes using a fixation

13Note, however, that anything within 1 degree may be fixated by the fovea without moving the eyes.
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Figure 22: Tobii TX300 Eye-tracker. Screen size is 23 inches (557 mm wide) with 1920x1080 resolution. When a
participant is seated 65 cm away from the screen, it will subtend about a 31 degree visual angle.

filter. There is no precise means of translating gaze points into fixations, so we relied on Tobii

Studio’s default I-VT fixation filter to perform this task for us. The Tobii Studio user manual [95]

describes this filter as follows:

The general idea behind an I-VT filter is to classify eye movements based on the velocity of the

directional shifts of the eye. The velocity is most commonly given in visual degrees per second

(◦/s). If the velocity of the eye movement is below a certain threshold the samples are classified as

part of a fixation.

More technical information about the I-VT fixation filter can be found in a Tobii whitepaper [67].

Per the Tobii Studio user manual, we also filtered out fixations which the eye-tracker marked as

potentially invalid (i.e., with a left or right eye validity code higher than 1).

Over the course of 290 trials (10 trials per participant), we collected around 50,000 fixations

(average of 172 per trial). Each fixation consists of a two-dimensional screen coordinate, a start

time, and a duration in milliseconds. A quick plot of one trial’s fixations on a static image of the

participant’s screen immediately reveals one of the many challenges involved in analyzing gaze

data (see Figure 23). Like the gaze point to fixation translation step that Tobii Studio’s fixation filter

performs, there is some guesswork involved in mapping fixations to areas of interest (AOIs). In the

next section, we describe our method for assigning fixations to words, lines, and interface regions

on the screen.
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Figure 23: Fixation circle plot for a single trial (between functions program). Circle radii are proportional to
fixation duration.

10.3 Areas of Interest

An area of interest (AOI) is a region of the screen where we would like to know when the

participant is fixating. We define three kinds of code AOIs (block, line, syntax) and two kinds of

interface AOIs (output box, continue button). A block AOI is one or more lines of code separated

from other blocks by at least one blank line. Figure 24 shows the block AOIs for the

between functions program (highlighted on the left side of the screen) as well as the output box

and continue button AOIs (highlighted on the right side of the screen). Figure 25 shows the line

and syntax AOIs for the same program. Line AOIs include indentation because it is semantically

relevant to Python. Syntax AOIs are automatically computed with the popular Pygments

library [9] and assigned one of the following categories: keyword, identifier, operator (+, -), literal,

or comparison (<, >).

Because fixations are essentially timestamped screen coordinates, the easiest way to map a fixation

to an AOI is to simply check if the fixation point lies within one of the AOI rectangles (Figure 26).

This method, which we will refer to as point mapping, is fast and easy to compute. When AOIs

are large (relative to the expected error of the eye-tracker) and separated by a sufficient amount of
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Figure 24: Block areas of interest for the (between functions program). The output box and continue button are
also areas of interest.

Figure 25: Left: line areas of interest in the between functions program. Right: syntax areas of interest in the
between functions program.
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empty space, point mapping can be used to accurately map fixations to the correct AOIs. If AOIs

are small and close together, however, point mapping may fail to correctly map fixations due to

hardware error or participant movement. Extending the boundaries of an AOI can help, but only if

one AOI rectangle does not overlap another. Because our code AOIs are relatively small and close

together, we consider a second mapping method that we call circle mapping.

Figure 26: Point-based AOI mapping. Fixations are mapped to an AOI if the fixation point lies within the AOI
rectangle.

When circle mapping fixations to AOIs, a circle is centered around the fixation point. For our

analysis, the radius of the fixation circle (20 pixels) was chosen based on the size of our text and

expected error of the eye-tracker. The area of the circle’s intersection with every AOI is computed

(Figure 27), and the AOI with the largest area of overlap is mapped to the fixation. This mapping

method is more computationally intensive, but has an advantage over point mapping when AOIs

are close and their boundaries cannot be extended without overlap. When a fixation occurs near

two AOIs, the closest one will be mapped to the fixation. Circle mapping could also be used to

assign probabilities to multiple AOIs (based on area of overlap), and combined with a Markov

model to find the most likely series of fixations over time (see Future Work).

10.3.1 Offset Correction

During the data cleaning step of our analysis, fixation coordinates were manually adjusted in the

vertical direction for each participant. A single vertical offset was used to correct fixations for each

participant’s trials, and was chosen to increase the overlap of fixations with non-empty portions of

the screen. Figure 28 demonstrates the process: an uncorrected fixation plot is shown on the left.

The fixations near the continue button (highlighted in green) suggest that the eye-tracker may be

reporting gaze points slightly low for this participant. On the right, the corrected fixation plot lines
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Figure 27: Circle-based AOI mapping. Fixations are surrounded by circles and mapped to the AOI with the biggest
area of overlap (AOI 1 in this case).

up better visually with the non-empty portions of the screen. All offsets are documented, and the

original raw data has been preserved.

Figure 28: Example of offset correction. Raw fixations (left) were shifted up to better align with known areas of
interest (right).

While an automated offset correction process would have been preferred, conventional methods

require knowing where a participant must be looking at some point in time. We did not require

that participants fixate in a specific spot at the start or end of a trial, so this information was not

available. Although it would be reasonable to expect participants to fixate on the continue button

before ending a trial, we found several instances where this was clearly not the case. Indeed, some

participants hovered their mouse cursor over the continue button, shifted visual attention to the

code (perhaps for a final check), and clicked the button without re-fixating it first!
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10.3.2 Scanpath Comparisons

With fixations mapped to areas of interest, we can now codify a participant’s behavior over time. A

scanpath is a string representing the order in which AOIs were fixated during a trial. This string

does not typically contain any duration information, and adjacent fixations on the same AOIs are

usually collapsed into a single symbol. For example, the sequence of fixated AOIs in Figure 29 is

AABCBCCA. Removing duplicate adjacent fixations, we are left with the scanpath ABCBCA.

Figure 29: Creation of an AOI scanpath. Fixations are mapped to an AOI sequence string, often with repeated items
removed.

Scanpaths can be used to generate transition matrices, which quantify how often one AOI is

fixated after another. Using the scanpath from our example above (ABCBCA), the transition matrix in

Figure 30 shows that B always follows A, that C always follows B, and that both A and B follow C

half the time. More sophisticated methods, such as the scanpath successor representation [47]

incorporate discounted temporal information (e.g., C eventually follows A). For our analysis,

however, we only make use of simple transition matrices.

Metrics like the Levenshtein Distance (commonly know as string edit distance) can be used to

compare scanpaths. This distance metric between two strings increases by one for each insertion,

deletion, or character change necessary to transform one string into another [79]. The distance

between similar strings, such as 123 and 1234 will be small (in this case, just 1). The maximum edit

distance between two strings is the length of the largest string, and thus we can use this value as a

normalization factor (distance / length of largest string). The normalized edit distance between
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Figure 30: Transition matrix for the scanpath ABCBCA. B always follows A, A follows C half the time, etc.

scanpaths can be used to cluster trials by strategy – common orderings of AOI fixations. This

makes sense when there are strong expectations about AOI fixation order, and when scanpaths are

close in length. More general algorithms, such as ScanMatch [21], make use of techniques

developed for DNA sequence matching. These algorithms allow for more fine-grained control of

sequence substitutions (e.g., by penalizing specific character replacements). They are also much

better at dealing with scanpaths that have missing segments.

10.4 Eye-Tracking Metrics

Once gaze data has been processed into fixations and saccades, there are a plethora of metrics

available to summarize the data [71]. Table 4 lists the handful of metrics we used to summarize

participant fixations within and between trials. The fixation count is simply the number of

fixations, while mean fixation duration is the average amount of time a participant spent fixation

some area of interest (AOI). Fixation rate is the number of fixations per second over the course of a

trial. Spatial density divides an AOI into a grid, and is higher when more cells in the grid receive

at least one fixation. The normalized saccade length and average saccade length measure the

total and average Euclidean distances between fixations. Finally, the Uwano review percent is the

percentage of lines fixated in the first 30% of a trial.
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Name Description

Fixation Count Number of fixations in a given time period.
Mean Fixation Duration Total fixation duration in a given time period divided by the fixation

count.
Fixation Rate Number of fixations divided by the number of seconds in a given

time period.
Spatial Density Number of grid cells containing at least one fixation in a regular

N × N grid covering a given AOI [20].
Normalized Scanpath Length Total Euclidean distance between fixations in a scanpath divided by

time between first and last fixation.
Average Saccade Length Average euclidean distance between start and end points of each

saccade.
Uwano Review Percent Percentage of code lines reviewed within the first 30% of a trial [97]

Table 4: Eye-tracking metrics used in our analysis.

10.4.1 Line Metrics

What properties of a line of code influence a participant’s reading behavior? We might expect the

position and length of a line to influence when a participant fixates the line and for how long. We

define several textual and content-based metrics to quantify the properties of each line of code.

Table 5 describes textual metrics, which could be applied to any text – source code or natural

language. These metrics quantify the size and position of a line, as well as the distribution of

whitespace within it. Table 6 lists metrics specific to source code, such as the number of keywords

and operators.

The line length is simply the number of characters in a line, excluding the whitespace at the start

of a line. Rather than use line number, we calculate line number proportion. This metric tends to

correlate better with the time of first fixation (Section 12.1), suggesting that participants perform an

initial scan of a program faster for larger programs. The whitespace proportion of a line is simply

the proportion of spaces to characters, excluding initial indentation. Lastly, the indentation level

measures the amount of whitespace before a line begins, divided into 4 space blocks (a standard in

Python).

For content-based metrics, we define the keyword count, identifier count, and operator count.

These are simply the number of keywords, variable/function names, and mathematical/boolean

operators in a given line. The category of a line was based on a number of factors. For example,

lines containing a for or return keyword were classified as “For Loop” and “Return Statement.”
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Textual Metric Definition
Line length Number of characters (excluding indentation)
Line number proportion Line number divided by total number of lines
Whitespace proportion Number of spaces (excluding indentation)
Indentation level Number of 4-space blocks on the left

Table 5: Textual line metrics

Content Metric Definition

Keyword count Number of class, def, for, if, print, return
Operator count Number of *, +, -, ., <, =, >, and, in
Identifier count Number of class/function/variable names
Line category Content of line, one of:

• List creation (literal [1, 2, 3])
• Comparison (x < y)
• Math operation (+, ∗, −)
• For loop (for x in y)
• Function call (f(x))
• Function definition (def f(x))
• If statement (if x)
• Print statement (print x)
• Return statement (return x)
• Class definition (class Foo)
• Assignment (x = y)

Table 6: Content-based line metrics

Some lines, such as x = [1, 2, 3], could have multiple categories (assignment, list creation). We

picked the category for each line that was highest in the list given in the final cell of Table 6, so the

example line would be classified as a list creation rather than an assignment.

11 Part 2: The eyeCode Library

To facilitate the analysis of eye movement data in the context of program comprehension, we

created a Python library called eyeCode. Tobii Studio provides basic plots and statistics, but

customization is limited to a few menu options. A more sophisticated tool, OGAMA (Open Gaze

and Mouse Analyzer), is a freeware package with many more bells and whistles [99]. In addition to

standard eye movement plots, OGAMA can be used to create areas of interest and compute the

Levenshtein distance between scanpaths. Like Tobii Studio, however, OGAMA is intended to be

68



fairly task neutral, and therefore did not have specific tools for program comprehension

experiments.

The eyeCode library is built on top of the pandas statistical computing library [60], and contains

specialized functions for processing, plotting, and computing metrics over fixations and saccades

on a static code display. The source code is freely available at

http://github.com/synesthesiam/eyecode under a liberal open source license. Example

analyses and data from multiple experiments (including this one) are embedded into the library

along with participant info and a web-based fixation viewer.

11.1 Areas of Interest

Identifying areas of interest (AOIs) can be done automatically for programming languages that are

supported by the popular Pygments library [9]. This relieves the researcher of the need to

manually create AOIs for each code “word”, line, and block. Pygments contains lexers for a variety

of languages and, when combined with a monospace font size and line spacing, can be used to

generate rectangles for every token in a program. Figure 31 shows the token AOIs identified from a

short Java program. Tokens are then merged into lines, and lines are merged into

whitespace-separated blocks.(Figure 32). For experiments using variable-width fonts, eyeCode has

methods for scanning raw images to locate words and lines.

Figure 31: Areas of interest for a Java program automatically identified using the Pygments Python library.

After identifying areas of interest, eyeCode can map fixations to AOIs via a process called hit

testing. Two methods are currently supported: point mapping and circle mapping (see Section 10

for details). AOIs in eyeCode can also be grouped into layers, allowing overlapping AOIs to be

hit-tested simultaneously (only AOIs within a layer must be disjoint). Hit-tested fixations can be

easily converted to scanpaths, summarized with metrics, or visualized with one of many plots.
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11.2 Metrics and Plots

Figure 32: Left: Line-based AOIs for the initvar - onebad program. Right: Block-based AOIs for the same
program.

Common eye movement metrics, such as fixation duration, can be computed per area of interest

and across trials (Figure 33). Higher-level metrics, like transition matrices and spatial density [20],

are available along with many custom visualizations. Because lines are especially relevant for code,

eyeCode contains specialized plotting functions for both static and dynamic views of line fixations

across and within trials. Figure 34 shows an aggregate view of fixation duration by line for all

participants in a single program (top), and a timeline of fixations on each line for a single trial

(bottom). Fixations in the timeline above the dotted line occurred in the output box – the text area

where participants enter their predictions of program output.

The “Super Code” plot combines fixation duration information about code elements, lines, and

blocks into a single plot (Figure 35). The color of each code element represents the relative amount

of time spent on that element. Each line has a bar next to it, with the length proportional to the

total fixation duration on that line. These bars are also colored, and each block of code shares the

same color. This shows the relative amount of time spent on each block as a whole – the darkest

red set of bars had the most fixation duration.

11.3 Rolling Metrics

The eyeCode library supports computing some low and high-level metrics over a rolling time

window in a trial. Comparing the visualization of these rolling metrics with the line fixation

timeline allows for the gathering of additional evidence to support hypothesis about participants’
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Figure 33: Total fixation duration by AOI kind and name for initvar - onebad (all participants).

Figure 34: Top: Total fixation duration for each line (all participants). Bottom: Fixation timeline for experiment 1
trial 1.
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Figure 35: Relative fixation duration plot for all overload plusmixed trials. Text color indicates fixation duration
relative to other code elements. Bar color indicates relative fixation duration per whitespace-separated block. Bar length
is proportional to within-block fixation duration.

real-time cognitive processes. In Figure 36, for example, both the average length of a saccade and

average duration of a fixation are computed every half second across a one second window. Large

changes in either metric can be mapped back to the line fixation timeline in Figure 34, and potential

causes can be enumerated based on where and when the participant is looking. Some metric

spikes, such as the increase just after 25 seconds, may be expected – here, the participant is clearly

transitioning back and forth between the output box and the source code. Others, such as the

increase in average fixation duration just after 15 seconds, suggest increased focus. Given the

subsequent transition to the output box (and that the first response characters are typed

afterwards), it’s reasonable to guess that the participant is mentally calculating the product

1 ∗ 2 ∗ 3 ∗ 4 = 24. Indeed, inspecting the participant’s response reveals an “a = 24” following by a

correction to just “24”.
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Figure 36: Rolling metrics for experiment 1 trial 1 (initvar - onebad). Average saccade length (red, left) and
average fixation duration (green, right) computed over a one second window every half second.

12 Part 2: Results

We collected approximately 50,000 fixations from 288 trials across 29 participants. Below, we

analyze and summarize our data first across all trials (Section 12.1), and then by individual

program kind (Section 12.2). Plots and analyses were done using the eyeCode library. Statistics

were computed with scipy [51], and linear models were fit using the statsmodels package [83].

Non-parametric statistics were used to compare groups (Mann-Whitney U test) and determine

correlations (Spearman’s r) [86]. We calculate effect sizes for U tests using the rank-biserial

correlation r, a metric whose range is [−1, 1] with 0 meaning no correlation [103]. As a rule of

thumb, we take absolute values of r greater than or equal to 0.2 to indicate a meaningful

relationship (and |r| > 0.4 as a strong relationship). For correlations, we infer weak, moderate,

strong, and very strong relationships when |r| is greater than or equal to 0.2, 0.3, 0.4, and 0.7

respectively.

12.1 Reading Behavior

Across all participants and trials, we observed a mean fixation duration of 273 ms. Fixations

typically last 200-300 ms [72], but higher values have been observed in several program

comprehension studies. A fixation duration range of 309-408 ms was found in a program

comprehension study by Busjahn et. al [14]. Participants in the same study read natural language
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texts, and a typical fixation duration range of 232-285 ms was recorded. In another study by

Bednarik et. al, participants under most conditions had mean fixation durations in the 300-400 ms

range when viewing code [4].

When fixating the output box – the text box into which participants typed their responses –

fixations were significantly longer, with an average of 331 ms versus 267 ms when fixating source

code (U = 89197473.5, p < .001, r = 0.03). This suggests that participants were attending to their

own predicted output slightly more, but the effect size is too small to be sure. Per trial, we

observed an average of 172 fixations and approximately 2.73 fixations per second (Figure 37). At

the trial level, and for each line of code, total fixation count and duration were almost perfectly

correlated (r = 0.97, p < .001). At the interface level, participants produced an average of six

transitions between the source code and output box, indicating an on-demand construction of

responses. Our analyses of individual programs’ code line and output box transition matrices

support this hypothesis by correlating output transitions and responses.

Figure 37: Fixation metric distributions for all trials.

Participants tended to read programs in line order (see Figure 38 for an example). The time of their

first fixation (proportional to the trial duration) on each line was strongly correlated with the line

number (proportional to the total number of lines in the program). In fact, line number proportion

alone accounts for approximately half of the variance in a simple linear model predicting first
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fixation proportion (r2 = 0.57). Textual line metrics, such as line length, indentation, and

whitespace proportion did not significantly improve predictions. Additionally, content-based line

metrics (e.g., number of identifiers, operators) did not improve the linear model’s performance.

Figure 38: Timeline for trial 268 (overload plusmixed). Participants read programs (mostly) in line order before
responding.

Longer lines tended to receive more time: total fixation duration per line and line length were

strongly correlated (r = 0.41). Adding the whitespace proportion and length of the line to a simple

linear model predicting fixation duration produces an r2 of 0.54. Surprisingly, additional textual

and content-based line metrics to not improve model performance significantly. This may be due

to “important” program lines simply being longer, such as lists containing values necessary for

calculations. The relationship between category and fixation duration may also be non-linear,

resulting in a plateau in linear model performance.

While the category of a line was not a significant predictor of first fixation or total fixation duration,

there are potential confounds due to patterns in the our source code. Across all 25 programs,

whitespace proportion decreased with line number (i.e., textual density increased). Additionally,

operator counts were positively correlated with whitespace proportion and identifiers, but

negatively correlated with keyword counts. These patterns may have induced co-variances

between textual and content-based metrics, which resulted in a lack of model performance

improvement. A meta-study of multiple code repositories would be required to determine whether

these patterns hold in general across Python code, or if they are simply an artifact of the programs

in our experiment.

Based on other eye-tracking studies, we expected to find a correlation between programmers’
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experience level and eye movement metrics, especially mean fixation duration. Each participant’s

distribution of mean fixation durations per trial is shown in Figure 39. While participants are

somewhat distinguishable by these distributions, they are heavily skewed. In addition, sorting by

years of programming experience on the x-axis does not show evidence of a strong trend. A linear

model predicting mean fixation duration from programming experience does produce a significant

p-value (< 0.05) and a negative coefficient, but the effect size is extremely small (r2 = 0.021).

Figure 39: Mean fixation duration for each trial, grouped by participant. Participants are ordered from least to most
programming experience.

A similar pattern is seen when looking at the number of fixations per second (fixation rate).

Figure 40 shows the distributions of mean fixation rates by trial for all participants. The x-axis is

again sorted by years of programming experience, but this time there is not even a

statistically-relevant trend. The discussion in section 13 provides potential reasons for the

mismatch between experience and fixation duration/rate – our unique task and fairly simple

programs.

Uwano Review Percent and Spatial Density. Uwano et. al found that programmers tended to

fixate 72.8% of code lines during the first 30% of a trial [97]. We refer to this value as the Uwano

Review Percent. Interestingly, we had a very similar observation: across all trials, an average of

72.5% of code lines were fixated in the first 30% of a trial. However, this number appears to be

largely driven by the number of lines in the trial’s program. Percentages ranged from 44.4% to
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Figure 40: Mean fixation rate for each trial, grouped by participant. Participants are ordered from least to most
programming experience.

91.1% depending on the program base and version. Additionally, a strong correlation was found

between the Uwano Review Percent and the number of lines of code for individual trials

(r = −0.40, p < 0.05). Thus, we cannot infer something general about a programmer’s behavior,

independent of the program, from the Uwano Review Percent.

We computed the spatial density of fixations over an envelope surrounding all lines of code for

each trial. This envelope was divided into a grid whose cells were 30 pixels by 30 pixels, and the

density was simply the percentage of these cells that had at least one fixation [20]. Across all

programs, the mean spatial density was surprisingly consistent with a mean of 0.40 and a standard

deviation of 0.07. This value is strongly correlated with the percentage of the code area that has

text in it, however, suggesting the obvious – participants are not fixating empty space (r = 0.57,

p < 0.01). Different grid sizes may provide more useful information, but we will leave this exercise

for future work.

12.1.1 Saccade Angles

Saccades are the quick jumps between fixations, and can reveal interesting details about a task. The

angle and distance between the source and destination fixation of each saccade can be plotted and

compared between different tasks. When reading natural language text – e.g., a paragraph of
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English – we might expect most saccades to be short and to the right, with a handful of long

saccades to the left (when jumping to the next line). The right-most polar plot of Figure 41 shows

precisely this: saccade angles and distances collected from a reading task in which 12 participants

read and answered questions about a paragraph of English text [13]. Each dot represents a single

saccade’s angle (0◦to the right) and length (distance from center, proportional to Euclidean

distance of longest saccade).

If we examine the saccade angles between fixations over code, we find large differences with the

natural language task. The left-most plot in Figure 41 contains saccades from all participants and

trials in our experiment that occurred over the program text (i.e., excluding the output box). Angles

are significantly more spread out in the vertical direction (90◦and 270◦), and there appear to be

equal numbers of long right and left saccades. While code is often considered text when modeling

program comprehension [29], it is clearly read differently than English! This aggregate view may

be slightly misleading, however. If we focus on a single program base – counting in the middle

plot of the same figure – saccades are much less vertical. This makes sense given that the counting

programs are only 3 and 5 lines long. The English text was 4 lines long, begging the question:

would a multi-paragraph natural language task produce a saccade plot like the left-most or

right-most plot of Figure 41? We will leave this question for future work.

Figure 41: Saccade angles for all code fixations (left), from just the counting programs (center), and from fixations
in a natural language reading experiment (right). Distance from center is proportional to the longest saccade.
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12.1.2 Code Element Fixations

Using the Pygments lexer, we divided code elements into five categories: identifiers, operators,

literals, keywords, and conditions. Identifiers are simply the names of functions and variables.

Literals are lists, strings, numbers, and boolean values like True and False. Operators were either

mathematical (e.g., +, *) and set operations like in. Conditions involved numerical comparisons,

such as < and >. Across all participants and trials, Figure 42 shows the total fixation durations for

each code element category, both raw totals (left) and normalized by the number of characters in

each category (right). We can see that, per character, keywords receive the least amount of fixation

time, followed by identifiers and literals. Operators and conditions received the most normalized

fixation time – a result we should expect given the prominence of simple calculations and

conditional (if) statements in our programs. Literals, such as lists and strings, received most of the

total fixation duration in individual programs (see Section 12.2), but their large textual size puts

them in the middle of the normalized plot. Our results here are mostly in line with other program

comprehension experiments, though every experiment categorizes code elements slightly

differently (see Discussion for details).

Figure 42: Total fixation durations by code element category. Left: raw totals by category. Right: totals divided by
areas of category elements across all programs.

12.1.3 Scanpath Comparisons

In an attempt to identify common strategies, we compared the scanpaths of participants viewing

the same program using the normalized Levenshtein (string-edit) distance [79]. Two kinds of
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scanpaths were computed: (1) between whitespace-separated blocks of code, and (2) between

individual lines of code. The output box was included in both kinds of scanpaths, and repeated

visits to the same area of interest were removed. For each program, clusters of scanpaths with low

edit distances (e.g., below 0.25) would represent common ways of reading and evaluating the

program.

We were surprised to find large differences between participant scanpaths. On average, we

observed a normalized edit distance of 0.52 for block/output scanpaths and 0.65 for for

line/output scanpaths (Figure 43). These values indicate that participant looking behaviors were

highly individualized – i.e., a given pair of scanpaths from the same program tended to differ more

than 50%. At the level of individual program versions, the mean and median edit distances were

always greater than 0.25. The closest was funcall space with a median of 0.26.

Figure 43: Normalized edit distances between participant scanpath pairs. Left: code block and output box scanpaths.
Right: code line and output box scanpaths.

There are two likely reasons for the large difference between participant scanpaths. First, our task

was fairly free-form – participants were not constrained to read or respond in any specific order.

Second, there were no time constraints on individual trials, producing scanpaths with variable

lengths. The edit distance metric we use is sensitive to both of these complications. Variations of

the edit distance exist, with different costs for insertions, deletions, replacements, and even

transpositions (e.g., ba to ab). Methods for normalizing scanpaths also exist, such as removing two

character repeats (e.g., abab becomes ab) to avoid capturing refixations and simply clipping all

scanpaths to the same length. Lastly, entirely different comparison algorithms can be used – e.g.,
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ScanMatch [21], scanpath entropy [49]. Because of the large space of possibilities here, we will

leave more sophisticated scanpath clustering for future work.

12.2 By Program

In this section, we break results down by individual program base and version. We begin by

examining participant performance, graded by how closely their responses approximated the

programs true printed output. A perfect grade was given if there was a match, character for

character. Allowing some room for error, a correct grade was given to a response that matched the

true output, sans some whitespace and formatting characters (e.g., commas, brackets). Figure 44

shows the proportion of correct (green) and incorrect (red) responses for each program version. It’s

immediately apparent that scope, counting, and between were the most difficult for participants.

Because there were only 29 participants in our experiment, however, a statistical argument for

performance differences between program versions is not feasible. Our larger study with

Mechanical Turk participants aims to answer these kinds of questions.
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Figure 44: Correct (green)/incorrect (red) trial proportions and counts by program version.
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12.2.1 between

The between programs tested the effects of pulled-out versus inline functionality (i.e., putting code

into functions versus repeating it). In both versions, two lists are filtered and printed, and then the

common elements in the original lists are printed. We saw several shared looking behaviors

between both versions. For example, participants tended to give the majority of their fixation

duration to the x and y lists, and slightly less time to the first comparison in the filtering operation.

The functions version contained two functions (between and common), corresponding to the

filtering and intersection operations performed on the two lists. Figure 45 shows where

participants spent their time when looking at the code. As we might expect, most of the time was

spent looking at the two lists (lines 15 and 19). Interestingly, we can see that slightly less time was

spent on the second list (line 19). This pattern recurs throughout many of the programs, suggesting

that participants are faster at evaluating the second instance of the between function. While this

might be expected for a function call, the same pattern is observed in the inline version

(Figure 48), where the code is duplicated.

Figure 45: Total fixation duration for between functions broken down by screen region, line, and token. Dark red
regions have the highest concentration of fixation time (all trials).

Inspecting the transition matrix for functions, we can observe some expected behavior. The
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highest probability transitions from the output box are to lines 15-19 – where the two lists are

located. Transitions to the output box involve these lines, but also include the common function call

on line 23. Notable transition probabilities also occur between lines 15 and 19, something we

would expect if participants were comparing both lists to find the common elements. To see the

actual process of evaluation, though, we need to move beyond the aggregate transition matrix and

focus on the dynamic behavior within single trials.

Figure 46: Transition matrix for between functions (all participants). Probabilities below 0.1 are not annotated.

Using a timeline of fixations on each line of code (and the output box), we can observe distinct

phases of evaluation at the level of an individual trial. Figure 47 shows a trial timeline with five

different sections highlighted in blue from left to right, representing what we believe to be the

participant (1) reading the between function, (2) reading the common function, (3) filtering the first

list, (4) filtering the second list, and (5) finding the common elements between lists. Additional

evidence comes from this participant’s intermediary responses (highlighted in yellow and listed in

Table 7). These responses line up nicely with our hypothesized order of evaluation by coming at

the ends of the last three sections.
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Figure 47: Timeline of fixations by line for a single between functions trial. Regions in blue correspond to expected
steps in evaluation. Yellow regions match response times from Table 7.

time ms response
90689 [8,7,9]

127881 [8,7,9]•[1,0,8,1]
151920 [8,7,9]•[1,0,8,1]•[8,9,0]

Table 7: Intermediary responses for trial 9-88 (between functions). The • character represents newlines.

85



The inline version did not contain any function definitions, and instead repeated code for the

filtering and intersection operations. Figure 48 shows the relative amount of time spent on each

line of this version. Like functions, less time is spent on the second instance of the filtering

operation (lines 8-13), suggesting that participants recognized the repeated pattern. Unlike

functions, however, relatively little time was spent on the intersection operation (lines 15-19)

compared to the common function. Our larger study with participants from Amazon’s Mechanical

Turk found a slight, though significant, increase in correct responses for inline versus functions.

Figure 48: Total fixation duration for between inline broken down by screen region, line, and token. Dark red
regions have the highest concentration of fixation time (all trials).

Based on the eye movement data summary here, it seems reasonable that the intersection operation

in inline was more recognizable than in functions. When inspecting response errors in the larger

study, however, we found that participants were no more likely to make a mistake on the final line

of output ([8, 9, 0]) in either version. This output line – corresponding to the intersection

operation – was five times more likely to contain an error than the first output line, and over twice

as likely than the second. A better hypothesis might be that participants simply mistook the

intersection operation for something else. Over 40% of participants who answered incorrectly (in

both versions) provided an [8] as the last output line. This mistake is consistent with assuming

that the intersection operation occurs between x between and y between rather than x and y.

Perhaps, then, participants spent less time on the intersection operation because they had
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(sometimes incorrect) assumptions about what it was “supposed” to do.

12.2.2 counting

The counting programs tested the effects of whitespace on the grouping of statements in a for

loop. Both versions of counting did the same thing: print “The count is i” and “Done counting”

for i ∈ [1, 2, 3, 4]. While the nospace version had the for loop declaration and the two print

statements in the body on consecutive lines, the twospaces version added two blank lines between

the first and second print statement. Because Python is sensitive to indentation, this did not

change the semantics of the program (i.e., both print statements still belonged to the for loop).

The extra whitespace in the twospaces version clearly had an effect: only 36% of participants

provided a correct answer (as opposed to 80% correct in the nospace version). Proportionally,

participants spent more time on the last print statement in the nospace version (Figure 49), likely

because they were reading it during each evaluation of the loop body. This hypothesis is supported

by inspecting the transition matrices for both counting versions (Figure 50). Participants were

almost twice as likely to fixate the “Done counting” line after the first print statement on line 2 in

the nospace version than in the twospaces version.

Figure 49: Total fixation durations by line for both versions of the counting program (all participants). Top:
nospace, bottom: twospaces.

We can even see a difference in the twospaces trials alone if we split them out by correct and

incorrect responses. The transition matrices reveal an interesting difference: participants that

provided a correct response were about twice as likely to fixate on the “Done counting” line after

line 2 (Figure 51). Examples of individual trials where this behavior was observed are shown in

Figure 52. In the correct trial (top), the participant reads all lines of the program before visiting the
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Figure 50: Transition matrices for counting programs (all participants). Probabilities below 0.1 are not annotated.

output box to start typing their response. The participant in the incorrect trial, however, visits the

output box after mainly fixating on line 2, and tends to fixate the “Done counting” print statement

(line 5) in isolation.

Figure 51: Transition probabilities between lines and the output box for the twospaces counting program. Left:
trials with correct responses. Right: trials with incorrect responses.

The data from counting demonstrate that reading behavior and program interpretation are

strongly linked. We are not suggesting, however, that simply failing to spend sufficient time

looking at the “Done counting” line causes a participant to produce an incorrect response. Rather,

this is likely a symptom of an underlying error when spatially grouping the print statements.

Would the same pattern of errors occur if the entire program was embedded in a larger for loop or

function? Further work is needed to determine which spatial cues programmers use to group code

elements, and how twospaces is violating the assumptions behind those cues.
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Figure 52: Fixation timelines for two twospaces trials. The top trial resulted in a correct response, while the bottom
trial did not.

12.2.3 funcall

The funcall programs each performed a compound calculation using a single, simple function:

f (x) = x + 4. The calculation, f (1)× f (0)× f (−1), either had no whitespace between terms

(nospace version), a single space between all tokens (space), or had each call to f (x) bound to a

variable before completing the calculation (vars). We expected more whitespace to facilitate faster

trials and more correct responses, especially in the vars versions where the calculation is broken

out into multiple, named steps (i.e., x, y, z).

Trial time and response correctness across all versions was effectively the same, violating our

performance expectations. In terms of fixation time, the results are also largely the same across

versions: the arguments provided to f and the + operator are focal points (Figure 53). The return

keyword on line 2 is fixated more often than we would expect – keywords received the smallest

fixation duration per area across all programs in our experiment (Figure 42). Looking at the

transition matrices for each version (Figure 54), we can see that line 2 is a common destination.

This is especially true from lines with f calls (line 4 in nospace and space, lines 4-6 in vars). We

suspect that the return keyword served as a beacon for visual jumps back to the addition on line 2,

thus increasing its share of relative fixation time.

The transition matrix for the vars version reveals steadily decreasing jump probabilities back to

89



Figure 53: Total fixation durations by line for all three versions of the funcall program (all participants). Top:
nospace, middle: space, bottom: vars.

line 2 for each call of f (lines 4-6). This suggests that participants needed to look up the definition

of f less and less as they performed the calculation. A good example of this behavior is shown in

Figure 55. The participant fixates lines 1 and 2 three times in the first five seconds, and twice in the

next five seconds. By the end of the trial, only the output box is being fixated, presumably as the

participant calculates the printed product. Looking at the participant’s keystrokes partially

confirms this hypothesis – an intermediary result of 12× 5 is typed first before being replaced by a

60 at about 26.8 seconds.

Let’s dig just a little deeper. Looking at the average fixation duration over a rolling window across

the same trial, we can see two spikes around 17 and 27 seconds (Figure 56). Given the rolling

window delay, these events likely correspond to the initial computation of the three additions

(1 + 4, 0 + 4, −1 + 4), and the later computation of the final product (5× 4× 3). Similar

correspondence between average fixation duration over a rolling window and mental computation

was found in the initvar programs (Section 12.2.4).
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Figure 54: Transition matrices for funcall programs (all participants). Probabilities below 0.1 are not annotated.

Figure 55: Fixation timeline for vars trial. The highlighted region (yellow) goes from the participant’s first keystroke
to the last.
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Figure 56: Average fixation duration over a 1 second rolling window (1/2 second step).

12.2.4 initvar

The initvar programs each contained two accumulation loops: one performing a product, and the

other performing a summation. In the good version, both loops were intended to meet

expectations; the product loop had an initial value of 1, and the summation loop had an initial

value of 0. The onebad version, however, started the summation loop at 1 (an off-by-one error).

The bothbad version contained the same error, and also started the product loop at 0 (making the

final product 0).

The fixation durations and transition matrices for all versions were fairly similar, except for one

major difference: participants in the bothbad version spent much less time on the list in the first

for loop (Figure 57). This provides evidence for our suspicions that participants would

“short-circuit” the product calculation by noting that a = 0, and thus any product with a would

also be 0. Performance-wise, this resulted in a significant increase in response proportion – i.e., a

higher proportion of bothbad trials were spent responding.

We expected the bothbad transition matrix (Figure 58) to have a large transition probability from

lines 2 or 3 to the output box, representing a short-circuited calculation (and entry of a “0” by the

participant). We did not observe this in the aggregate across all bothbad trials, but the behavior is

evident in some of the individual trials. For example, Figure 59 shows the timeline of trial 59

(participant 6). The red line shows when the participant first typed a “0” in the output box, which

occurs immediately after looking at the first loop. We can be confident this represents a

short-circuited calculation because this participant’s keystrokes (Table 8) contained intermediary
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Figure 57: Total fixation durations by line for two versions of the initvar program (all participants). Top: bothbad,
bottom: onebad.

Figure 58: Transition matrix for good and bothbad trials. Probabilities below 0.1 are not annotated.
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time ms response

17848 0
19294 0•
40125 0•1
43821 0•1+
45245 0•1+1
46765 0•1+1+
50837 0•1+1+3
51853 0•1+1+2
52205 0•1+1+2+
54669 0•1+1+2+3
55182 0•1+1+2+3+
55645 0•1+1+2+3+4
64188 0•1+1+2+3+4
64332 0•1+1+2+3+4 =
64836 0•1+1+2+3+4 =
70900 0•1+1+2+3+4 = 1
71037 0•1+1+2+3+4 = 11
81000 0•11

Table 8: Time series of responses for trial 59, participant 6 (initvar bothbad). A • represents a new line.

results for the remaining calculation.

Figure 59: Fixation timeline for bothbad trial. The red line indicates when a “0” response was given.

Another source of evidence for a short-circuited calculation in the same trial comes from the

average fixation duration over a rolling window (Figure 60). The largest spikes occur right around

when the participant has finished typing the operands for the final calculation (60-70 sec), and not

when looking at the first calculation. Interestingly, a small spike occurs around the 50 second mark

– right when the participant corrects an error in their response. Average fixation duration may

indicate intermediary errors as well as mental calculations.
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Figure 60: Average fixation duration over a 1 second rolling window (1/2 second step).

12.2.5 order

The order programs contained three functions, f (x), g(x), and h(x). f and g added 4 and doubled

x respectively, and h computed f (x) + g(x). In the main body, all three functions were called on

x = 1 in the same order: f , g, h. The order in which the three functions were defined was either in

the called order (inorder), or in a slightly different order (shuffled) – h, f , g.

We found that participants in the shuffled trials took slightly longer to provide responses,

presumably because there were ordering expectations for the definitions of f , g, and h. The

visualizations of where participants spent their time in both versions are very similar, with the

exception that a bit more time was spent in shuffled on the return keywords inside each function

(Figure 61). Like the funcall programs, we suspect that these code elements served as beacons for

quickly locating the function bodies. The implicit ordering of functions in the inorder version may

have lessened the need for such beacons. This hypothesis is not quantifiable, however, without

further experimentation.

Surprisingly, we did not see differences between versions in the transition matrices, or in metrics

related to visual search efficiency, such as normalized scanpath length, fixation rate, spatial density,

and average saccade length. Given the observed difference in trial times in our larger study

(inorder participants were slightly faster), we expect that there exists some quantifiable method for

distinguishing between participants’ eye movements in both versions. We may need more

participants, however, to locate a distinguishing feature.

Looking at the timelines for individual trials, similar behaviors can be easily noted (Figure 62). In
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Figure 61: Total fixation durations by line both versions of the order program (all participants). Top: inorder,
bottom: shuffled.
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the inorder trial (top), we can see fixations move from lines 1-2 (definition of f ) to lines 4-5

(definition of g), and finally to lines 7-8 (definition of h) with occasional jumps back to line 2 ( f ).

Similarly, the shuffled trial (bottom) starts on lines 4-5 ( f ), goes to lines 7-8 (g), and ends with

lines 1-2 (h) plus the occasional jump to line 4 ( f ). The shuffled ordering does not appear to heavily

impact visual search or transitions to the output box.

Figure 62: Timeline of line and output box fixations for two order trials. Top: inorder, bottom: shuffled.

12.2.6 overload

The overload programs tested the effects of operator overloading – i.e., having multiple meanings

for the same operator. Each program had three blocks of code, each with two variable assignments

followed by an operation with those two variables (and a printing of the result). The final block
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always assigned a string “5” and string “3” to variables e and f, and then printed e + f. The +

operator in Python is overloaded, and can either be addition or string concatenation depending on

the types of its operands. The preceding two code blocks either had exclusively multiplications

(multmixed), additions (plusmixed), or string concatenations (strings).

We expected participants to be “surprised” more by the final + operation (string concatenation) in

the plusmixed version than the others due to being primed with the mathematical sense of the

operator. We saw the largest differences between plusmixed and strings: participants focused

much more on lines 9-11 in plusmixed, specifically on the string values and + operator (Figure 63).

The results for multmixed were similar to plusmixed, though not quite as distinct from strings.

Figure 63: Total fixation durations by line for two versions of the overload program (all participants). Top:
plusmixed, bottom: strings.

It’s unclear whether participants were more “surprised” by the string numerals (“5” and “3”) or

the + operator. While the transition matrices for plusmixed and strings were not drastically

different (Figure 64), we did see a slightly higher probability of going from the output box to lines

98



9-11 in the plusmixed version (0.54 versus 0.25). This suggests that participants were more likely to

go back and check the string concatenation block of code after responding when it was proceeded

by additions. A good example of this behavior is shown in the timeline in Figure 65. After typing

the final line of their response (“53”), as indicated by the yellow region, the participant fixates the

output box before returning to the final code block. Interestingly, the participant also returns to line

7 (print c + d), perhaps to double-check that previous additions were not actually string

concatenations. It appears that some priming is going on for the + symbol, and that having

multiple senses of an operator in the same small program is enough to affect eye movements.

Figure 64: Transition matrices for overload programs (all participants). Probabilities below 0.1 are not annotated.

Figure 65: Fixation timeline for a plusmixed trial. The yellow region indicates when the participant was typing
“53”.

99



12.2.7 partition

The partition programs each iterated through a list of numbers, and printed the number plus a

“high” or “low” designation on each line. Numbers less than 3 were low, and numbers greater than

3 were high (3 itself was skipped). The balanced version iterated over [1, 2, 3, 4, 5], producing an

equal number of low and high numbers. In contrast, the unbalanced and unbalanced pivot

versions iterated over [1, 2, 3, 4], printing two low and only one high. The unbalanced pivot

version used variable pivot = 3 instead of the constant 3 in its if statements.

We expected participants to make fewer errors in the balanced version because of the symmetric

low and high values. No systematic difference between versions was observed, however. In fact, the

most common error was simply forgetting to print the number (i) alongside the low/high label.

There were no major differences between relative fixation durations either – participants in all

three versions spent the majority of their time on the list and two conditionals (Figure 66).

Figure 66: Total fixation durations by line for the unbalanced pivot version of partition. Other versions had
similar results.

The transition matrices for all versions were also very similar, but contained an interesting pattern.

Figure 67 shows the transition matrix for the unbalanced pivot trials. Lines 2-4 form a looping

core in the matrix, with high probability transitions going to the next and previous lines. From this,

we might expect participants to snake their fixations up and down these lines as they evaluate the

program. Indeed, this behavior is observable in the fixation timelines – e.g., Figure 68.

This timeline also helps explain the transition probabilities coming out of line 1 (pivot = 3). The

highlighted portions correspond to the participant’s entry of each response line (1 low, 2 low, and

4 high). We can see several quick jumps up to line 1, one before each entry of the first and second

response lines. Line 1 receives few visits, so the high probability transitions from it to lines 2 and 4

are likely due to (1) most participants reading the program in line order, and (2) referencing the

variable’s value while evaluating the print statement on line 4. The latter behavior is referred to as
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tracing in Cant et. al’s cognitive model of program comprehension [16] and, along with chunking,

encompasses much of basic program comprehension.

Figure 67: Transition matrix for all unbalanced pivot trials. Probabilities below 0.1 are not annotated.

Figure 68: Fixation timeline for an unbalanced pivot trial. The yellow regions correspond to the typing of the first,
second, and third response line.

12.2.8 rectangle

The rectangle programs computed the area of two rectangles, represented either as a collection of

four x/y variables (basic), a Rectangle object (class), or a pair of (x, y) coordinates (tuples).

All 29 participants produced a correct response to the rectangle programs, and we did not find

any significant difference in performance metrics between versions in the present or larger study
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(with Mechanical Turk participants).

Despite the different forms of the rectangle programs, the eye-tracking visualizations reveal

strong similarities. In general, participants focused on the ordering of arguments (either to the

area function or the Rectangle class constructor), and on the numeric values for width and height

(Figures 69, 70, 71). Interestingly, less time was always spent on the second set of

arguments/values, providing evidence for short-term learning of the area operation. Similar

behavior was observed for the filtering operation in the between programs (Section 12.2.1).

Figure 69: Total fixation durations by line the basic version of rectangle.

Figure 70: Total fixation durations by line the class version of rectangle.

The tuples version was distinguishable by participants’ use of their time on lines 2 and 3,
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especially around the xy 2 operand. The extra time was likely used to verify the calculations of

width and height, which could easily have been wrong if the indices provided to xy 1 and xy 2

were reversed. The corresponding lines in the basic and class versions were not fixated as much,

suggesting that the calculation verification was easier with flat variable names (e.g., x1, x2).

Figure 71: Total fixation durations by line the tuples version of rectangle.

The transition matrix for tuples exemplifies the “block” structure observed in the matrices of all

three versions (Figure 72). Clusters of high transition probabilities closely follow the area function

body and two area computations. Two additional transition probabilities stand out here: (1) from

line 9 to 11, and (2) from the output box to line 11. These seem likely to correspond to different

evaluation strategies – either reading all the way through the program or responding to the first

area computation before continuing. Inspecting individual trial timelines, we can indeed find

examples of both! Figure 73 shows two examples, with the highlighted regions corresponding to

the participants’ response periods. On top, we see a participant read the entire program from top

to bottom before responding. On the bottom, there are distinct reading/response phases for both

area computations. Note also that the area function (lines 1-4) is not fixated during the second

computation; another example of short-term learning.
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Figure 72: Transition matrix for all tuples trials. Probabilities below 0.1 are not annotated.
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Figure 73: Fixation timelines for two tuples trials. The yellow regions correspond to response periods.
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12.2.9 scope

The scope programs applied two functions to a variable named added: one function named add 1,

and the other named twice. Both of these functions produced no visible effects – they did not

actually modify their arguments or return a value. In the samename version, we reused the variable

name added for each function’s parameter name. For the diffname version, however, we used a

different parameter name (num) for both functions. Because the add 1 and twice functions had no

effect, the main added variable retained its initial value of 4 throughout the program (instead of

being 22).

Participants made errors on both versions of the scope programs at about the same rate, and we

did not observe non-eye-tracking performance differences between versions (trial duration,

response proportion, etc.). In the diffname version, however, significantly more fixation time was

spent on line 2 relative to the rest of the program (see the bottom of Figure 74). In this version, a

variable named added existed in the main program body and inside the add 1 and twice functions.

The extra time spent on line 2 suggests that having the same variable name for global and local

added variables had a measurable effect, though not one that was visible by simply looking at

responses and other non-eye-tracking performance metrics.

We did not observe any significant differences between versions in the transition matrices, and

only minor differences existed in the transition matrices between correct and incorrect trials

(Figure 75). Specifically, we note an increased probability of returning from the output box to line 8,

as well as transitioning from line 2 to line 1. The former may simply be an additional check by

participants after responding, and the latter may be evidence of recognition that the modified

variable (added or num) is locally rather than globally scoped. The true reasons for these differences,

however, may be much more complicated. As we mentioned previously, some participants asked

the experimenter if functions in the Python language were “call by value” or “call by reference”

when evaluating this program. We did not expect such a simple-looking program to induce deep

language-related questions, and make our interpretation of the data so difficult!
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Figure 74: Total fixation durations by line for both versions of the scope program (all participants). Top: diffname,
bottom: samename.

Figure 75: Transition matrices for correct and incorrect trials in the scope programs. Probabilities below 0.1 are not
annotated.
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12.2.10 whitespace

The whitespace programs print the results of three simple linear calculations. In the zigzag

version, the code is laid out with one space between every mathematical operation, so that the line

endings have a typical “zig-zag” appearance. The linedup version, in contrast, aligns each block of

code by its mathematical operators, nicely lining up all identifiers. We expected there to be a speed

difference between the two versions, with participants being faster in the linedup version. When

designing the experiment, most of our pilot participants agreed that this version facilitated reading,

but performance differences were not observed in practice.

We did not find differences in eye movements between versions either. Time spent on each line was

approximately the same (Figure 76), and the average lengths of saccades as well as the spatial

density of fixations on code were statistically indistinguishable. The transition matrices were also

quite similar (Figure 77), leading us to conclude that lining up the text in this small program did

not have an impact on eye movements. Because both styles are commonly found in code,

programmers may have no trouble switching back and forth. Comparing one or both of these

styles to a third, uncommon style may reveal differences (e.g., breaking the line in unusual places).

Figure 76: Total fixation durations by line for both versions of the whitespace program (all participants). Top:
linedup, bottom: zigzag.

As with our programs, we observed correlations between fixation duration and specific times in a

trial when we expected participants to be performing mental calculations. Figure 78 shows the

fixation timeline for a single zigzag trial (top) and the participant’s average fixation duration over

a rolling one second window every half second (bottom). The six highlighted regions correspond

to the typing of the six parts of the response: 0, 1, 1, 6, 2, 11 (including spaces and new lines). Note
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Figure 77: Transition matrices for both versions of whitespace. Probabilities below 0.1 are not annotated.

that most of these regions overlap with local spikes in fixation duration, and are also places where

we might expect the participant to be calculating. The y component calculations are relatively more

difficult, and do indeed correspond to clear spikes. The final x component response (for x end,

however, also corresponds to a spike despite being a simple addition. We hypothesize that the

increase in fixation duration may be due to mental retrieval of variable values (x base, x other)

rather than calculation. A quantitative cognitive model of program comprehension could predict

the underlying source of the fixation duration spikes even though they may produce the same

observable phenomena.
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Figure 78
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13 Part 2: Discussion

Across 29 participants and 288 trials, we found programmers’ eye movements to be strongly

associated with the task at hand (output prediction), and highly informative about the relevant

parts of each program. We saw evidence for short-term learning, both with repeated function calls

and repeated code patterns. Surprisingly, we did not find large differences between the eye

movements of more and less experienced programmers. While our larger study with Mechanical

Turk did find instances where performance differed for more experienced programmers, this did

not show up in our eye-tracking analysis. Despite this, we did observe one case where eye

movements and task performance were strongly linked: the counting programs. Below, we

provide a high-level discussion of our results as they relate to expected task-oriented behavior by

participants and our three main research questions.

13.1 Task-Oriented Behavior

Participants’ eye movement data revealed strong task-specific signatures for some programs.

While the data from all programs were indicative of task-oriented behavior, the distributions of

fixation duration in between, initvar, and rectangle were especially insightful. In the between

programs, participants spent less time looking at the second instance of the between calculation in

both versions. Similar behavior was observed in scope and whitespace for repeated function calls

and calculations, indicating short-term learning and algorithm recognition by participants.

In the bothbad version of initvar, a decrease in fixation duration on lines associated with the first

calculation suggested that participants were short-circuiting the product after noticing the first

term was zero. The timeline for one bothbad trial in Figure 59 and the corresponding keystrokes in

Table 8 provided corroborating evidence, specifically an immediate response of “0” followed by an

explicit calculation. On the flip side in bothbad, one trial’s fixation timeline, average rolling

fixation duration, and sequence of keystrokes signaled the participant’s mental calculation

(Figures 34 and 36). We found a number of cases where spikes in the average rolling fixation

duration correlated with times when the participant was expected to be calculating (i.e., between

looking at the calculation line and responding).

Fixations in all three versions of rectangle were heavily focused on function arguments, either to
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the Rectangle constructor or the area function. Because all participants responded correctly to

this program, we considered the possibility that little to no verification of the program was done –

i.e., the area calculation was simply assumed to be correct. The eye movement data tells a different

story. Both the arguments passed to area or Rectangle and the arguments of the function/class

definition were focused on. In the tuples version, focus shifted to the extraction of coordinate

components for the rectangle’s width and height, again indicating that participants were intent on

verifying the program’s behavior. The transition matrices from rectangle also hinted at multiple

strategies that participants were using to evaluate the program. Further investigation revealed

trials that did precisely this (Figure 73), demonstrating the power of high-level, aggregate eye

movement statistics.

13.2 Research Questions

Next, we review our three research questions in light of the detailed results in the previous section.

R1. How does the eye movement data from our experiment compare to other eye-tracking

program comprehension experiments?

Based on previous program comprehension experiments with eye-tracking, we had specific

expectations for our low-level eye movement metrics. Average fixation durations in previous

experiments were higher than ours (300-400 ms versus 273 ms), and were also correlated with the

participant’s programming experience. We did not find programming or Python experience to be

even moderately correlated with any of our eye-tracking metrics (both low and high level). We

attribute these differences to the uniqueness of our task and the relative simplicity of our programs.

Other experiments have had participants debug more complex code, such as binary search

algorithms and prime number generators. In contrast, one of our most “complex” programs,

between, featured list filtering and intersection. Such simple programs may not invoke the same

behaviors observed in other experiments, especially in more experienced programmers.

Although our fixation metrics differed from other experiments, the distributions of fixation

duration across areas of interest produced results more in line with expectations. Keywords, for

example, received the least amount of focus, while more complex expressions with conditions and

operators received the most. A perfect comparison between experiments is not possible, however,
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due to differences in how some code elements are categorized. We consider Python’s True and

False to be literal values like numbers and strings, but they are categorized as keywords in at least

one other Java-based study [14]. Similar problems exist when comparing code complexity metrics

like Halstead volume [45] between programming languages. Precisely defining which code

elements are “operators”, “operands”, or neither can be surprisingly difficult – e.g., is the

semi-colon in Java an end-of-statement operator?

R2. Can aggregate eye movement metrics and summary statistics be predicted from

textual/syntactic features of code?

Across all programs and participants, we found that line-based reading behavior could be

moderately predicted from a few simple textual features. The total amount of fixation duration on

a line, for example, was decently predicted (r2 = 0.54) from just the length of the line and its

proportion of whitespace characters. Similarly, the time of the first fixation on a line (divided by

the total trial duration) could be predicted fairly well (r2 = 0.57) from the line number alone.

Surprisingly, the category of a line – e.g., function call, if statement, for loop – did not

significantly improved predictions. At the level of individual code elements, however, the category

was useful in predicting total fixation duration. A simple linear model with the categories keyword,

list, identifier, operator, string, integer, and tuple achieved an r2 value of 0.383. When the

line number of the code element was included, model performance increased to r2 = 0.576. Thus, it

appears that the category of a code element, and not the entire line, is a better predictor of fixation

duration, though line number still plays a significant role.

Several patterns emerged from the AOI transition matrices for individual programs. High

probability transitions tended to be clustered around whitespace-separated blocks of code, with

transitions up and down the block. The matrix in Figure 72 for rectangle tuples is an especially

clean example of this pattern. We expected the highest probability transitions from code to the

output box to come from print statements. While this was simply true for some programs, such as

funcall (Figure 54), the results were more complicated for most others. The transition matrices for

initvar shown in Figure 58, for example, require additional explanation. In the good version (left),

transitions to the output box tend to come from the final print statement (0.33 probability). The

sum of probabilities from lines 2-4 to the output box, however, accounts for just as much.
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Transitions from the output box often went to lists, such as those on lines 15 and 19 in between

functions (Figure 46). This makes sense, given that participants were supposed to filter the lists

and type their responses. In fact, we found a moderate correlation (r = 0.30, p < 0.001) between

the transition probability from the output box for a given line and the total fixation duration on

that line. If we interpret fixation duration as a measure of line importance, this says that

participants tend to return to important lines after providing partial responses (which almost

always co-occurred with fixating the output box).

R3. Do differences between versions of the same program, or demographics/performance of

the participant, influence eye movements?

We did not observe strong differences in low-level eye movement metrics or high-level statistics

between versions for most of our programs. Specifically, the two or three versions of between,

funcall, order, partition, scope, and whitespace were very similar in terms of fixation

duration distribution and AOI transition probabilities. There were not significant performance

differences between participants interpreting different versions either in this study (though there

were in our larger study).

The different versions of counting, initvar, overload, and rectangle, however, were

distinguishable by eye movement metrics and statistics. For counting, we observed a distinct

difference between the AOI transition matrices of correct and incorrect trials in twospaces version.

Participants who gave correct responses tended to read all lines of the program before responding,

while the others waited to read the final line. As mentioned above, the first calculation in the

bothbad version of initvar received less focus, presumably because participants recognized a

shortcut in the calculation not present in the other two versions. In the plusmixed and multmixed

versions of overload, the final “5” + “3” operation received more time than in the strings version

where all previous + operations were also string concatenations. Finally, the tuples version of

rectangle demonstrated a unique allocation of fixation duration on the calculation of the

rectangle’s width and height – a point where correct tuple indexing was critical.

Surprisingly, we did not find a strong or even moderate correlation between a participant’s

programming experience, Python experience, or response correctness and any of our low-level eye

movement metrics. Programming experience was a statistically significant predictor in a simple
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linear model predicting average fixation duration. However, the effect size (r2) was extremely

small (< 0.1), so we do not have much confidence in its generalizability to other groups of

programmers. As we discussed earlier for research question R1, our unique task and simple

programs may account for these results. Other performance metrics, such as trial duration, were

trivially correlated with number of fixations in a trial and total scanpath length – longer trials

necessarily mean more fixations and saccades. Other eye movement metrics, like average fixation

duration, fixation rate, and average saccade length were not correlated with any performance

metric or demographic value.

13.3 Scanpath Comparison

We had hoped to use the Levenshtein (string-edit) distance as a means of comparing participant

scanpaths on the same program. This proved more difficult than expected, as individual scanpaths

were quite different, even at multiple levels of granularity. While scanpaths at the code element

level (e.g., keywords, identifiers) will be obviously different and quite noisy, we were surprised to

find similar obstacles at the line and whitespace-separated block level. On average, we found

differences of over 50% between line and block scanpaths (over 60% for line). These results suggest

that alternative techniques may be necessary for meaningful comparisons of programmer

scanpaths, even for very simple programs. For example, Cristino et. al have developed a technique

based on the Needleman-Wunsch algorithm used to compare DNA sequences in

bioinformatics [21]. Hayes et. al have also created a method for converting scanpaths to a type of

transition matrix that retains temporal information (called the scanpath successor

representation) [47]. These new techniques may provide additional insight, but they are beyond

the scope of this work.

14 Part 2: Conclusion

Eye movements are a rich data source, and our analysis has shown just how much information can

be extracted from a mere 29 participants. Over the course of 288 trials, our participants predicted

the output of 25 total programs (10 programs each). Low-level eye movement metrics, such as

fixation duration and saccade length, did not correlate with task performance or programming
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experience. Fixation duration did serve as an excellent proxy for code line importance, with the

task-relevant lines of a program often receiving the most aggregate focus. In line with previous

experiments, we found that code elements like keywords and identifiers received the least amount

of focus, while more complex statements involving conditional/boolean expressions received

more.

High-level eye movement metrics and plots provided the most insight into our programmers’

cognitive processes. Area of interest (AOI) transition matrices revealed how often participants

transitioned between code lines and the output box. In several cases, these transition probabilities

provided hints at the kinds of strategies being used to evaluate the programs. In the counting

programs, for example, correct and incorrect responses to the twospaces version had distinct

transition matrices, with the latter having a smaller probability of reading the entire program

before starting to respond. The transition matrix for rectangle tuples had transitions

corresponding to two different strategies (single response, multi-response), and we found trials

clearly demonstrating each. Lastly, we combined high and low-level metrics using a rolling time

window across individual trials. When looking at combined changes in mean fixation duration,

recently fixated lines, and response keystrokes, we found that spikes in fixation duration often

co-occurred with times we would expect the participant to perform a mental calculation.

Eye-tracking has recently gained popularity in the program comprehension literature, augmenting

or replacing traditional methodologies like think-aloud. Metrics and plots derived from eye

movement data can be used to gain invaluable insight into a programmer’s cognitive processes.

This data could also be used to develop a cognitive model of program comprehension, a step

towards the semi-automated analysis of program language design. We plan to use the data

collected in this experiment to create a functioning version of Cant et. al’s Cognitive Complexity

Metric [16]. By incorporating existing components of a cognitive architecture – a computational

model of human cognitive – we will build on years of modeling research in human memory and

perceptual/motor systems.
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14.1 Future Work

Aside from developing a cognitive model, there are many other interesting avenues for future

work. An obvious extension to our experimental methodology is to include additional

programming languages. Java is used in a number of other studies, and so is a likely candidate.

More complex programs may elicit differences between more and less experienced programmers,

but may require introducing the skeleton of a development environment. A multi-file program, for

example, would require additional GUI elements like tabs or a file explorer. Human-computer

interface studies on integrated development environments (IDEs) exist (e.g., [56]), and it would be

interesting to add eye-tracking to the mix.

We used rolling metrics to correlate spikes in fixation duration with moments where we expected

participants to be performing some kind of mental calculation or memory retrieval. Many other

eye movement metrics, such as spatial density and saccade length, could be analyzed in a similar

manner. Additionally, different window sizes focus on different timescales, providing yet another

analysis parameter to vary.

Finally, our comparison of scanpaths was stunted by the brittle nature of the Levenshtein distance.

More robust, genomic-inspired methods, like ScanMatch [21] are in our sights for future work. A

more radical approach would involve starting at our AOI mapping stage, where fixations are

assigned to specific AOIs. Rather than picking a single AOI, the areas of overlap between a circle

surrounding the fixation point and proximate AOIs could produce multiple possible scanpaths.

Scanpath comparisons would then be between multi-dimensional spaces, rather than one

dimensional series, of AOIs.
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Part 3

Mr. Bits: A Quantitative Process Model of Simple

Program Understanding

&

Nibbles: A Constraint-Based Model of Program

Reading and Inference

Abstract

The cognitive complexity of a program, or how difficult it is to understand, is a function of

the underlying problem domain, the programming language, and the programmer themselves.

In this part, we explore two different modeling formalisms with the goal of producing a

quantitative model of human program comprehension. Specifically, we model beginning and

experienced Python programmers who are tasked with predicting the printed output of short

Python programs. We model the process of reading code using ACT-R, a cognitive architecture,

to simulate fixations and keystroke responses to the task. At a higher level of abstraction,

Cognitive Domain Ontologies and a constraint solver are used to model code interpretation and

human errors. We produce successful, executable models with both formalisms, but note that a

comprehensive model of our task will require their combination.
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15 Part 3: Introduction

15.1 The Complexity of a Program

What makes some code hard to understand? Intuitively, we might expect the difficulty of the

underlying problem, which the program is attempting to solve, to be a major factor. A program

designed to simulate the fine-grained physics of an automobile, for example, is likely to be more

complex than one that simply computes the average of a set of numbers. The latter program is also

bound to be shorter and use fewer operations than the former [104]. However, short and

simple-looking programs can be hard to understand, even for experienced programmers, when

certain notational and conceptual expectations are violated [89]. Therefore, the cognitive complexity of

a program – e.g., how hard it is to understand – is determined by computational, notational, and

psychological factors [16]. To fully understand and predict this kind of complexity, we must create

cognitive models of programmers that are capable of reasoning about source code and representing

programs in a human-like manner. These models could be used to locate unmaintainable code in

large codebases, inform design decisions for programming languages, and aid in the automated

generation of programs for humans. Additionally, quantitatively modeling such a complex, real

world task pushes the frontiers of Cognitive Science by combining existing models of

representation, working memory, planning, and problem solving.

In this part, we present two cognitive models, called Mr. Bits and Nibbles. Mr. Bits is designed to

simulate the eye movements and keystroke response times of a programmer who is tasked with

reading short Python programs and guessing their printed output. The model is built on top of the

ACT-R cognitive architecture, a computational simulation of the major components of human

cognition and perception, such as declarative/procedural knowledge, vision, and hearing [3]. Mr.

Bits is also intended to operationalize aspects of the Cognitive Complexity Metric [16] – a source

code metric designed to measure how difficult a program is to trace through and mentally chunk. A

major limitation of the Mr. Bits model, however, is that it cannot make errors. Therefore, we explore

an alternative formalism called Cognitive Domain Ontologies [33], and produce a second model

called Nibbles. Unlike Mr. Bits, Nibbles generates multiple possible interpretations of a program’s

code line-by-line using a constraint solver. After reading each line, Nibbles selects a single

(possibly incorrect) interpretation to incorporate into its running “mental model”. We evaluate Mr.
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Bits by comparing its timing performance to 29 human programmers, each tested on 10 out of a set

of 25 short Python programs. For Nibbles’ evaluation, we focus on 3 of these programs, and show

how the errors observed in our human programmers can be modeled by Nibbles.

15.2 The Psychology of Programming

Psychologists have been studying programmers for at least forty years [23]. Early research focused

on correlations between task performance and human/language factors, such as how the presence

of code comments impacts scores on a program comprehension questionnaire. More recent

research has revolved around the cognitive processes underlying program comprehension. Effects

of expertise, task, and available tools on program understanding have been found [28]. Studies

with experienced programmers have revealed conventions, or “rules of discourse,” that can have a

profound impact (sometimes negative) on expert program comprehension [89].

The majority of qualitative models of program comprehension are simply “box and arrow”

diagrams that connect English descriptions of the models’ cognitive components. Von Mayrhauser

et al. evaluate five such models in [101], and produce an integrated “metamodel” to capture shared

aspects of each individual model (Figure 79). The Integrated Metamodel and others like it

incorporate research from many facets of cognitive science: psychology, linguistics, computer

science, and even neuroscience [68]. They are useful for making sense of the myriad of results from

controlled studies of programmers over the last four decades [29]. Qualitative cognitive models

can help emphasize which aspects of cognition are most important for program comprehension,

such as language and problem solving skills [87]. Unfortunately, their predictive power is limited.

The Stores Model of Code Cognition, for example, emphasizes the importance of the central

executive and its relationship to strategic, semantic, and plan knowledge in code problem

solving [31]. But predicting whether or not a particular programmer will successfully comprehend

a specific program is simply not possible with the model. A quantitative model is needed, which

formalizes and operationalizes aspects of existing qualitative models to emulate the process of

reading, interpreting, and understanding a program. In this part, we develop and evaluate two

quantitative cognitive models of program comprehension built using different formalisms: the

ACT-R cognitive architecture [3], and Cognitive Domain Ontologies [33].
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Figure 79: High-level view of Von Mayrhauser’s Integrated Metamodel (re-created from Figure 6 in [101])

15.3 Why Model a Programmer?

The design, creation and interpretation of computer programs are some of the most cognitively

challenging tasks that humans perform. Understanding the factors that impact the cognitive

complexity of code is important for both applied and theoretical reasoning. Practically, an

enormous amount of time is spent developing programs, and we believe even more time is spent

debugging them. If we can identify factors that expedite these activities, then, a large amount of

time and money can be saved. Theoretically, programming is an excellent task for studying

representation, working memory, planning, and problem solving in the real world.

Our present research focuses on programs much less complicated than those the average

professional programmer typically encounters on a daily basis. We base our models on data from

the eyeCode experiment, a web-based experiment in which Python programmers were tasked

with predicting the printed output of 10 short Python programs [46]. This task is similar to

debugging a short snippet of a larger program, as our programmers were tasked to predict precise

output. Code studies often take the form of a code review, where programmers must locate errors
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or answer comprehension questions after the fact (e.g., does the program define a Professor

class? [10]). Our task differs by asking programmers to mentally simulate code without necessarily

understanding its purpose. In most programs, we intentionally used meaningless identifier names

where appropriate (variables a, b, etc.) to avoid influencing the programmer’s mental model.

The main product of this research is a realizable (executable) theory of program comprehension

that can quantitatively predict human performance in the eyeCode experimental task. We are

motivated to produce such a theory in order to (1) inform programming language design, (2)

provide a foundation for high-level source code inspection/generation tools, and (3) to push the

frontiers of quantitative model in Cognitive Science into more complex tasks.

Similar research has asked beginning (CS1) programming students to read and write code with

simple goals, such as the Rainfall Problem [44]. To solve it, students must write a program that

averages a list of numbers (rainfall amounts), where the list is terminated with a specific value –

e.g., a negative number or 999999. CS1 students perform poorly on the Rainfall Problem across

institutions around the world, inspiring researchers to seek better teaching methods. Our

experiment included many Python novices with a year or less of experience, so our results may

also contribute to ongoing research in early programming education [15].
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16 Part 3: Background

Psychologists have been studying the behavioral aspects of programming for at least forty

years [23]. In her book Software Design - Cognitive Aspects, Françoise Détienne proposed that

psychological research on programming can be broken into two distinct periods [29]. The first

period, spanning the 1960’s and 1970’s, is characterized by the importing of basic experimental

techniques and theories from psychology into computer science. Early experiments looked for

correlations between task performance and language/human factors – e.g., the presence or absence

of language features, years of experience, and answers to code comprehension questionnaires.

While this period marked the beginning of scientific inquiry into software usability from a

programming perspective, results were limited in scope and often contradictory.

The problem is simple: if task performance depends heavily on internal cognitive processes, then it

cannot be measured independent of the programmer. Early psychology of programming studies

relied exclusively on statistical correlations between metrics like “presence of comments” and

“number of defects detected,” so researchers were unable to explain some puzzling results. For

example, multiple studies in the 1970’s sought to measure the effect of meaningful variable names

on code understandability. Two studies found no effect [102, 85] while a third study found positive

effects as programs became more complex [81]. Almost a decade later, Soloway and Ehrlich

provided an explanation for these findings: experienced programmers are able to recognize code

schemas or programming plans [89]. Programming plans are “program fragments that represent

stereotypic action sequences in programming,” and expert programmers can use them to infer

intent in lieu of meaningful variable names. This and many other effects depend on internal

cognitive processes, and therefore require a cognitive modeling approach to explain [12].

16.1 The Cognitive Complexity Metric

Developed in the mid-nineties, Cant et al.’s cognitive complexity metric (CCM) attempted to

quantify the cognitive processes involved in program development, modification, and

debugging [16]. The CCM focuses on the cognitive processes of chunking (understanding a block of

code) and tracing (locating dependencies for the current chunk). Cant et al. provide mathematical

definitions for factors that are believed to influence each process. Some these factors are quantified
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by drawing upon the existing literature at the time, but many definitions are simply placeholders

for future empirical studies.

Section 17 describes Mr. Bits, a partial implementation of the CCM built using the ACT-R

cognitive architecture 16.2. Many of the underlying CCM terms can be simplified or eliminated

within ACT-R. This is because the subsymbolic layer in ACT-R already contains equations for

low-level cognitive processes like rule learning, memory retrieval, and visual attention. Below, we

describe the CCM in more detail. In addition to the high-level equations, we briefly discuss each

factor in the metric, and how it subsumed within our ACT-R model.

16.1.1 Chunking and Tracing

The cognitive processes of chunking and tracing play key roles in the cognitive complexity metric

(CCM). Chunking is defined as the process of recognizing groups of related code statements (not

necessarily sequential), and recording the information extracted from them as a single mental

symbol or abstraction. In practice, programmers rarely read through and chunk every statement in

a program. Instead, they trace forwards or backwards in order to find relevant chunks for the task

at hand [16]. Cant et al. define a chunk as a block of statements that must occur together (e.g., loop

+ conditional).14 This definition, however, is intended only for when the programmer is reading

code in a line-by-line forward manner. When tracing backwards or forwards across many lines (or

files), a chunk is defined as the single statement involving a procedure or variable’s definition. In

the remainder of this section, care must be taken to disambiguate Cant et al.’s use of the word

“chunk” and the ACT-R term (Figure 81). We will clarify instances where there may be ambiguity

between these two distinct terms.

16.1.2 Chunk Complexity (C)

The CCM depends on a dozen factors, many of which contain one or more “empirically determined

constants”. To compute the complexity Ci of chunk i, Cant et al. define the following equation:

Ci = Ri + ∑
j∈N

Cj + ∑
j∈N

Tj

14When operationalizing the definition of a chunk, Cant et al. admit that “it is difficult to determine exactly what constitutes
a chunk since it is a product of the programmer’s semantic knowledge, as developed through experience.”
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where Ri is the complexity of the immediate chunk i, Cj is the complexity of sub-chunk j, and Tj is

the difficulty in tracing dependency j of chunk i. The definitions of R and T are given as follows:

R = RF(RS + RC + RE + RR + RV + RD)

T = TF(TL + TA + TS + TC)

Each right-hand side term stands for a particular factor that is thought to influence the chunking or

tracing processes (Table 9). The underlying equations for each factor can be found in [16], but are

not needed for the discussion below.

16.1.3 Immediate Chunk Complexity (R)

The chunk complexity R is made up of six additive terms (RS, RC, RE, RR, RV , RD) and one

multiplicative term RF. These represent factors that influence how hard it is to understand a given

chunk.15

RF (chunk familiarity) This term captures the increased speed with which a programmer is able

to understand a given chunk after repeated readings. In ACT-R, the subsymbolic layer of the

declarative memory module handles this, as repeated retrievals of the same ACT-R chunk will

increase its retrieval speed. Declarative chunks are not stored independently, however, so the

activation of “similar” chunks will potentially cause interference. This means that increased

familiarity with one chunk may come at the cost of slower retrieval times for similar chunks.

“size”: (1) its structural size (e.g., lines of code) and (2) the “psychological complexity of identifying a

chunk where a long contiguous section of non-branching code must be divided up in order to be understood.”

In other words, RS should be affected by some notion of short-term memory constraints. Any

ACT-R model would be influenced by a chunk’s structural size simply because there would be

more code for the visual module to attend to and encode (i.e., more sequential productions fired).

We do not model the additional “psychological complexity” in Mr. Bits directly, and instead rely on

the interplay between vision and memory as code is read and re-read.

15More general forms for R and T are discussed in [16], but Cant et al. suggest starting with simple additive represen-
tations.
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RC (control structures) The type of control structure in which a chunk is embedded influences R

because conditional control structures like if statements and loops require the programmer to

comprehend additional boolean expressions. In some cases, this might involve mentally iterating

through a loop. We expect that boolean expressions are comprehended in much the same way as

for the RE factor (see below). Mr. Bits is not clever enough to chunk an entire loop at once, but it

will get faster at evaluating the loop body after each iteration.

RE (boolean expressions) Boolean expressions are fundamental to the understanding of most

programs, since they are used in conditional statements and loops. According to Cant et al., the

complexity of boolean expressions depends heavily on their form and the degree to which they are

nested. Mr. Bits evaluates boolean expressions in the same manner as numeric additions and

subtractions: via declarative memory retrievals (Section 17.4). Thus, it will get faster after repeated

uses of the same expression (e.g., true ∧ f alse). Unlike humans, however, Mr. Bits will not

short-circuit expressions, and avoid unnecessary memory retrievals (e.g., f alse ∧ . . . ∧ . . .).

RR (recognizability) Empirical studies have shown that the syntactic form of a program can

have a strong effect on how a programmer mentally abstracts during comprehension [42]. An

ACT-R model would show such an effect if its representation of the program was built-up over

time via perceptual processes. In other words, the model would need to observe actual code rather

than receiving a pre-processed version of the program as input (e.g., an abstract syntax tree). Mr.

Bits operates visually on text, though its goals are generated from a processed form of that text. It

does not, however, produce an abstract model above the line/token level like the Nibbles model

(Section 18).

RV (visual structure) This term represents the effects of visual structure on a chunk’s

complexity, and essentially captures how visual boundaries influence chunk identification. While

Cant et al. only describe three kinds of chunk delineations (function, control structure, and no

boundary), more general notions of textual beacons and boundaries have been shown to be

important in code [106]. For example, Détienne found that advance organizers (e.g., a function’s

name and leading comments) had a measurable effect on programmers’ expectations of the code
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that followed [26]. Biggerstaff et al. have also designed a system for automatic domain concept

recognition in code [8]. This system considers whitespace to be meaningful, and uses it to bracket

groups of related statements. As with the recognizability term (RR), it is crucial for an ACT-R

model to observe real code instead of an abstract syntax tree. Mr. Bits does not rely on whitespace

to delineate chunks, but does depend on function definition headers and for loop beacons to

accurately shift visual attention.

RD (dependency disruptions) There are many disruptions in chunking caused by the need to

resolve dependencies. This applies both to remote dependencies (e.g., variable definitions), and to

local dependencies (e.g., nested loops and decision structures). Cant et al. cite the small capacity of

short-term memory as the main reason for these disruptions. ACT-R does not have a distinct

“short-term memory” module with a fixed capacity. Instead, short-term capacity limits are an

emergent property of memory decay and interference [92]. Mr. Bits is capable of forgetting variable

values and previously-read lines of code if they are not retrieved frequently enough from memory

(Section 17.3). Frequent disruptions due to tracing will slow down retrievals when Mr. Bits returns

to the source line.

16.1.4 Tracing Difficulty (T)

Most code does not stand alone. There are often dependencies that the programmer must resolve

before chunking the code in memory and ultimately understanding what it does. The cognitive

complexity metric (CCM) operationalizes the difficulty in tracing a dependency as

T = TF(TL + TA + TS + TC). For these six terms, the definition of a “chunk” is slightly different

than with R. Rather than being a block of statements that must co-occur, a chunk during tracing is

defined as a single statement involving a procedure’s name or a variable definition.

TF (familiarity) The dependency familiarity has a similar purpose to the chunk familiarity (RF).

As with RF, ACT-R’s subsymbolic layer will facilitate a familiarization effect where repeated

requests for the same dependency information from declarative memory will take less time. The

effect of the available tools in the programmer’s environment, however, are also important. An

often-used dependency (e.g., function definition) may be opened up in a new tab or bookmarked
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within the development environment. A more comprehensive version of Mr. Bits would need to

interact with the same tools as a human programmer to produce “real world” familiarization

effects. As it stands, Mr. Bits simply relies on ACT-R’s declarative memory calculus to speed up

subsequent retrievals of the same dependencies over time.

TL (localization) This term represents the degree to which a dependency may be resolved

locally. Cant et al. proposed three levels of localization: embedded, local, and remote. An

embedded dependency is resolvable within the same chunk. A local dependency is within

modular boundaries (e.g., within the same function), while a remote dependency is outside

modular boundaries. Mr. Bits follows this model for embedded and local dependencies only as

multi-module programs are not yet supported. The resolution of variable names in Mr. Bits is

attempted in the immediate function context first, but may ultimately succeed either with an

earlier definition of the variable, or in a previous function/global context.

TA (ambiguity) Dependency ambiguity occurs when there are multiple chunks that depend

upon, or are affected by, the current chunk. The CCM considers ambiguity to be binary, so a

dependency is either ambiguous or not. Whether ambiguity increases the complexity of a chunk is

also dependent on the current goal, since some dependencies do not always need to be resolved

(e.g., unused parameters can be ignored). Mr. Bits is designed to evaluate short, simple programs,

and therefore does not encounter dependency ambiguity besides variables that share the same

name in separate function contexts. Multi-module programs, especially those with class

inheritance hierarchies, and outside the scope of Mr. Bits’ current abilities.

TS (spatial distance) The physical distance between the current chunk and its dependent chunk

will affect the difficulty in tracing. Lines of code are used in the CCM as a way of measuring

distance, though this seems less relevant with modern development environments. Developers

today may have multiple files open at once, and can jump to variable/function definitions with a

single keystroke. For single-file programs, like those Mr. Bits can evaluate, physical distance may

have a noticeable effect. As with the RS term, ACT-R’s visual module produces differential timings

for saccades to nearby and distance locations, and therefore no extra effort is required to support
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this term.

TC (level of cueing) This binary term represents whether or not a reference is considered

“obscure.” References that are embedded within large blocks of text are considered obscure, since

the surrounding text may need to be inspected and mentally broken apart. This term appears to be

related to the effect of visual structure on a chunk’s complexity (RV). Clear boundaries between

chunks (e.g., whitespace, headers) play a large role in RV , and we expect them to play a similar role

in TC. Tracing is presumed to involve a more cursory scan of the code than chunking, however.

Because Mr. Bits operates at a line/token level, it cannot (for lack of a better phrase) see the forest

for the trees, and is therefore not capable of modeling TC.

Term Description

RF Speed of recall or review (familiarity)
RS Chunk size
RC Type of control structure in which chunk is embedded
RE Difficulty of understanding complex Boolean or other expressions
RR Recognizability of chunk
RV Effects of visual structure
RD Disruptions caused by dependencies

TF Dependency familiarity
TL Localization
TA Ambiguity
TS Spatial distance
TC Level of cueing

Table 9: Important factors in the cognitive complexity metric. Rx terms affect chunk complexity. Tx terms affect
tracing difficulty.

16.2 The ACT-R Cognitive Architecture

ACT-R is “a cognitive architecture: a theory about how human cognition works.” [1] It is a

domain-specific programming language built on top of LISP [90], and a simulation framework for

cognitive models. There are eight modules in ACT-R, which represent major components of human

cognition (Figure 80). Module functionality exist at two layers: (1) the symbolic layer, which

provides a uniform programmatic interface for models, and (2) the subsymbolic layer, which hides

the implementation details of the module – e.g., the time it takes to retrieve an item from
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declarative memory. ACT-R models formalize humans performance on tasks using production

rules that send and receive messages (chunks) between modules via buffers. Models are simulated

and evaluated along psychologically relevant dimensions like task accuracy, response times, and

simulated BOLD.16 measures (fMRI brain “activations”) These simulations are reproducible, and

can provide precise predictions about human behavior. Below, we discuss the ACT-R architecture

in more detail, and provide examples of its successful application in a variety of domains.

Module Purpose

Procedural Stores and matches production rules, facilitates inter-module communication

Goal Holds a chunk representing the model’s current goal

Declarative Stores and retrieves declarative memory chunks

Imaginal Holds a chunk representing the current problem state

Visual Observes and encodes visual stimuli (color, position, etc.)

Manual Outputs manual actions like key-presses and mouse movements

Vocal Converts text strings to speech and performs subvocalization

Aural Observes and encodes aural stimuli (pitch, location, etc.)

Figure 80: ACT-R 6.0 modules. Communication between module buffers is done via the procedural module.

16.2.1 Buffers, Chunks, and Productions

The ACT-R architecture is divided into eight modules, each of which has been associated with a

particular brain region (see [3] for more details). Every module has its own buffer, which may

contain a single chunk. Buffers also serve as the interface to a module, and can be queried for the

16Blood-oxygen-level-dependent contrast. This is the change in blood-flow for a given brain region over time.
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module’s state. Chunks are the means by which ACT-R modules encode messages and store

information internally. They are essentially collections of name/value pairs (called slots), and may

inherit their structure from a parent chunk type. Individual chunk instances can be extended in

advanced models, but simple modules tend to have chunks with a fixed set of slots (e.g., two

addends and a result for a simple model of addition). Modules compute and communicate via

productions, rules that pattern-match on the slot values of a chunk or the state of a buffer. When a

production matches the current system state (all chunks in all module buffers), it “fires” a response.

Responses include actions like inserting a newly constructed chunk into a buffer, and/or

modifying/removing a buffer’s existing chunk.17

When it is possible, computations within a module are done in parallel. Exceptions include the

serial fetching of a single memory from the declarative module, and the visual module’s restriction

to only focus on one item at a time. Communication between modules is done serially via the

procedural module (see Figure 80). Only one production may fire at any given time18, making the

procedural model the central bottleneck of the system.

The visual, aural, vocal, and manual modules are capable of communicating with the model’s

external environment, such as a graphical interface with buttons. In ACT-R, this environment is

often simulated for performance and consistency. Experiments in ACT-R can be written to support

both human and model input, allowing for a tight feedback loop between adjustments to the

experiment and adjustments to the model. Lastly, the goal and imaginal modules are used to

maintain the model’s current goal and problem state, respectively.

16.2.2 The Subsymbolic Layer

Productions, chunks, and buffers exist at the symbolic layer in ACT-R. The ability for ACT-R to

simulate human performance on cognitive tasks, however, comes largely from the subsymbolic

layer. A symbolic action, such as retrieving a chunk from declarative memory, does not return

immediately. Instead, the declarative module performs calculations to determine how long the

retrieval will take (in simulated time), and the probability of an error occurring. The equations for

subsymbolic calculations in ACT-R’s modules come from existing psychological models of

17By default, chunks that are removed from a buffer are automatically stored in the declarative memory module.
18This is a point of contention in the literature. Other cognitive architectures, such as EPIC [53] allow more than one

production to fire at a time.
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learning, memory, problem solving, perception, and attention [1]. Thus, there are many constraints

on models when fitting parameters to human data.

In addition to calculating timing delays and error probabilities, the subsymbolic layer of ACT-R

contains mechanisms for learning. Productions can be given utility values, which are used to break

ties during the matching process.19 Utility values can be learned by having ACT-R propagate

rewards backwards in time to previously fired productions. New productions can also be

automatically compiled from existing productions (representing the learning of new rules).

Production compilation could occur, for example, if production P1 retrieves stimulus-response

pairs from declarative memory and production P2 presses a key based on the response. If P1 and P2

co-occur often, the compiled P1,2 production would go directly from stimulus to key press, saving a

trip to memory. If P1,2 is used enough, it will eventually replace the original productions and

decrease the model’s average response time.

Term Definition

Chunk Representation for declara-
tive knowledge

Production Representation for proce-
dural knowledge

Module Major components of the
ACT-R system

Buffer Interface between modules
and procedural memory
system

Symbolic Layer High-level production sys-
tem, pattern-matcher

Subsymbolic Layer Underlying equations gov-
erning symbolic processes

Utility Relative cost/benefit of
productions

Production Compilation Procedural learning, com-
bine existing productions

Similarity Relatedness of chunks

Figure 81: ACT-R terminology

19This is especially useful when productions match chunks based on similarity instead of equality, since there are likely
to be many different matches.
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16.2.3 Successful ACT-R Models

Over the course of its multi-decade lifespan, there have been many successful ACT-R models in a

variety of domains. Success here means that the models fit experimental data well, and were also

considered plausible explanations. We briefly discuss three examples below, though many more

are available on the ACT-R website [1].

David Salvucci (2001) used a multi-tasking ACT-R model to predict how different in-car cellphone

dialing interfaces would affect drivers [77]. This integrated model was a combination of two more

specific models: one of a human driver and another of the dialing task. By interleaving the

production rules of the two specific models20, the integrated model was able to switch between

tasks. Salvucci’s model successfully predicted drivers’ dialing times and lateral deviation from

their intended lane.

Brian Ehret (2002) developed an ACT-R model of location learning in a graphical user

interface [35]. This model gives an account of the underlying mechanisms of location learning

theory, and accurately captures trends in human eye-gaze and task performance data. Thanks to

ACT-R’s perception/motor modules, Ehret’s model was able to interact with the same software as

the users in his experiments.

Finally, an ACT-R model created by Taatgen and Anderson (2004) provided an explanation for why

children produce a U-shaped learning curve for irregular verbs [93]. Over the course of early

language learning, children often start with the correct usage (I went), over-generalize the

past-tense rule (I goed), and then return to the correct usage (I went). Taatgen and Anderson’s

model proposed that this U-shaped curve results from cognitive trade-offs between irregular and

regular (rule-based) word forms. Retrieval of an irregular form is more efficient if its use frequency

is high enough to make it available in memory. Phonetically post-processing a regular-form word

according to a rule is much slower, but always produces something. Model simulations quantified

how these trade-offs favor regular over irregular forms for a brief time during the learning process.

The success of these and other non-trivial models in different domains gives us confidence that

ACT-R is mature enough for modeling program comprehension. Section 17 describes the Mr. Bits

ACT-R model in detail, and compares its performance to human programmers on the same task.

20Salvucci notes that this required hand-editing the models’ production rules since ACT-R does not provide a general
mechanism for combining models. See [78] for a more advanced model of multi-tasking in ACT-R.
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16.3 Cognitive Domain Ontologies

A Cognitive Domain Ontology (CDO) is a formal representation of domain knowledge based on

System Entity Structure (SES) theory [33]. SES theory is a formal specification framework for

describing system aspects and properties [108]. For decades, researchers have used SES theory to

automate the exploration of design space alternatives by enumerating the set of all possible system

configurations, pruning them according to domain constraints, and then simulating/evaluating

each pruned system. CDOs are a theoretical extension to SES in which “system configurations”

capture spaces of behavior or situational knowledge. A model or agent uses a CDO to explore

alternative courses of action, or interpretations of evidence, based on a domain’s structure, a-priori

constraints, and situational factors. Psychologically, CDOs can be used to represent mental models21,

and the exploration of alternative interpretations mimics the reasoning processes of abduction and

deduction. Deduction produces logical consequences from observation and axioms whereas

abduction generates likely explanations for observed evidence. While abduction, unlike deduction,

is not logically guaranteed to be true, it is an invaluable tool for knowledge-level modeling [61].

CDOs are formally represented as trees with entities as nodes, and one of three relations as edges

(see next section for details). The pruning of alternatives in a CDO is cast as a constraint

satisfaction problem (CSP), and is computationally realized using two extensions to Common

LISP [90]. The Screamer [88] and Screamer+ [105] LISP extensions allow for non-deterministic

execution of code by adding two special forms. The either form takes any number of LISP

expressions, and establishes a choice point. The value of the first expression is returned, and control

flow proceeds as normal until a fail form is reached. On each fail, Screamer backtracks to the

nearest either, returning the value of its next expression. Once values are exhausted, evaluation

jumps to the next nearest either or terminates. Listing 2 provides a LISP code example with

all-values, a Screamer form that establishes a non-deterministic context and returns a list of all

generated values. Screamer+ extends Screamer to allow for more complex data types in either,

such as Common Lisp Object System (CLOS) objects [52].

21Similar in spirit to Johnson-Laird’s mental models [50]. Constraint knowledge in CDOs is also implicit – i.e., not
available for introspection.
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> (all-values

(let ((x (either ’a ’b ’c))

(y (either 1 2 3)))

;; Exclude (B 2)

(if (and (eq x ’b) (eq y 2))

(fail))

(list x y)))

;; ((A 1) (A 2) (A 3) (B 1) (B 3) (C 1) (C 2) (C 3))

Listing 2: Example LISP code with Screamer extensions. The either and fail forms are used to generate values.

16.3.1 Entities, Relations, and Constraints

A CDO consists of a set of entities, relations between entities, and constraints. Entities may also have

one or more attached variables, which can store values like integers and strings, and may be used in

constraints. Every CDO has a top-level, or root, entity and alternating levels of relations and child

entities, forming a tree with entities at the leaves (see Figures 82 and 83). Each entity in the tree has

a unique name and its own collection of attached variables. In a given solution from the domain, an

entity may be active or inactive depending on the active state of its parent and the type of relation

between them. The root entity is always active.

There are three types of relations between entities: sub-parts, choice-point, and instance set. A

sub-parts relation, visually represented as an and, is a conjunction of its children. When the parent

entity of a sub-parts relation is active, its child entities will necessarily be active. Sub-parts are used

to represent required structure in a domain, such as the cost and performance characteristics of a

computer component (the Details relation in Figure 83).

A choice-point relation, visually represented as an xor, is a disjunction of its children, with only

one child being active at a time in a solution. Choice points are the source of generativity in CDOs,

with all combinations of active/inactive choice point children forming the structure of the

complete, unconstrained solution space. Because each choice under a choice point may have

sub-structure, it is possible for different solutions from the same CDO to significantly differ in their

tree structure.

Lastly, the instances set relation, visually represented as a 0..n, creates n copies of its sub-structure
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in each solution. Like sub-parts, an instance set’s child entities are active when its parent is active.

Increasing n, the cardinality of the instance set, can exponentially expand the size of the solution

space because all child choice points (and nested instance sets) are independent of each other.

Constraints can be mapped across all child entities of an instance set, or may target specific

instances by ordinal (ord).

Constraints. In addition to the structure of a domain, CDOs contain constraints that serve to

prune out non-sensical or irrelevant sections of the solution space. The basic CDO constraint

language (Table 10) is based on first-order logic with some additional operators for accessing and

comparing entities and variables. Constraints typically set or key off of choice points, shutting

down generativity in the Screamer constraint solver. In domains with instance sets, higher-order

constraints can be mapped across instances (setting instance variable values), or used to constrain

the set (e.g., at most one instance with choice A). Section 16.3.3 provides details on the higher-order

constraint operators.

Operator Description Example

==> Implication (If) (==> p q)

<==> Biconditional (IFF) (<==> p q)

not Negation (Not) (not p)

or Disjunction (Or) (or p q)

and Conjunction (And) (and p q)

e@ Entity in CDO (e@ e1 e2)

v@ Variable in CDO entity (v@ (e1 e2) v1)

equale Entity equality (equale e1 e2)

equalv Variable equality (equalv v1 v2)

let Local binding (let ((p p’)) (equale p p’))

Table 10: First order CDO constraint language.

16.3.2 Ball Example

Figure 82 shows a simple example domain. In this domain, a ball is broken down into two

components: a size and a sport. Both components are choice points with three options, making for a

total of 9 possible solutions. With no constraints, the solution space consists of all combinations of

size and sport (Table 11). Note that there is an implicit conjunction at the root entity.

This solution space is not very useful, however, as it contains many nonsensical solutions. Golf
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Figure 82: The ball CDO. A ball has a size and associated sport.

Solution Size Sport

1 Small Baseball
2 Small Golf
3 Small Basketball
4 Medium Baseball
5 Medium Golf
6 Medium Basketball
7 Large Baseball
8 Large Golf
9 Large Basketball

Table 11: Unconstrained solution space of the ball CDO (9 solutions).

balls, baseballs, and basketballs should be small, medium, and large respectively. Three simple

constraints will serve to constrain our domain:

1. Small ⇐⇒ Gol f

2. Medium ⇐⇒ Baseball

3. Large ⇐⇒ Basketball

Note that all three constraints are bidirectional. A unidirectional constraint, such as Small ⇒ Gol f

would allow for more solutions, including medium and large golf balls. With these new constraints

in place, our solution space size is reduced from 9 to 3 (Table 12), and now matches our intuition

about real balls.

Translated into the Common LISP CDO framework, the top-level Ball entity becomes a ball

function which takes a set of constraints as parameters. Each entity underneath Ball is accessible as

a named LISP form that can be referenced in constraints. The solutions function explores the

solution space defined by the top-level entity and constraints, and enumerates :all solutions or
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Solution Size Sport

1 Small Golf
2 Medium Baseball
3 Large Basketball

Table 12: Constrained solution space of the ball CDO with all constraints (3 solutions).

:one solution.

> (solutions

(ball

(<==> small golf)

(<==> medium baseball)

(<==> large basketball))

:all)

;; 1. ball: small, golf

;; 2. ball: medium, baseball

;; 3. ball: large, basketball

16.3.3 Higher-Order Constraints

When a CDO includes one or more instance set relations, it is useful to write constraints that

function across sets of entities and variables. Table 13 lists the operators available for instance sets

and higher order constraints – e.g., constraints that take other constraints as parameters. Operators

like every and at-least apply some constraint to an instance set and require, respectively, that all

or at least n of them hold. The mapc operator is similar, but is used to apply side effects to all

entities in an instance set, such as calculating the value of a variable. Any first order constraint can

make use of the special ord to determine which instance they are being applied to. This allows for

higher order constraints to be sensitive to ordering in an instance set; often used when order

reflects spatial arrangement.

If the Ball entity in our example above was underneath an instance set (called balls), the 3

bidirectional constraints would now need to be applied across each ball instance. For example:

(every

(and

(<==> small golf)

(<==> medium baseball)

(<==> large basketball))
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Operator Description Example

n@ Entity set under an instance (n@ inst)

ord Special variable for instance ordinal (equalv (v@ (e1) ord) 1)

exactly Exactly n instances match (exactly 2 cstr (n@ inst))

at-least At least n instances match (at-least 1 cstr (n@ inst))

at-most At most n instances match (at-most 3 cstr (n@ inst))

mapc Map constraint with side effects across instances (mapc cstr (n@ inst))

Table 13: Instance set and higher order CDO constraint operators.

(n@ balls))

The higher order every constraint would ensure that all ball instances adhered to the size/sport

constraints.

16.3.4 Computer Configuration Example

To demonstrate the use of each relation (sub-parts, choice points, and instance sets) and higher

order constraints, we will use a CDO that models the configuration of a desktop computer.

Figure 83 shows the CDO structure. At the top level, we say that a computer configuration consists

of a set of components (0..n). Each component has a type (graphics, memory, sound), a role in the

configuration (active, not active), and details of the product, such as its vendor, cost, and

performance. Note that cost, performance, and model are variables attached to the Product entity.

Attached variables can be used in constraints, but unlike choice points, Screamer does not generate

possible values for them.

With no constraints and 8 components, the space of possible solutions is quite large. The 3

component types (2 memory types), 2 roles, and 3 vendors make up (3 + 2)× 2× 3 = 30 possible

choices. Assuming our configuration only has 8 components, there are a total of 308 possible

solutions! Clearly, we need some constraints before exploring the solution space.

Table 14 lists the details of the components we will be considering in this example. The first 5

components are new, and may be purchased for the given cost. The last 3 components are currently

in use, so they cost nothing to continue using. Performance numbers have been associated with

each component, with higher being better. We will say that the cost and performance of an entire

configuration is the sum of the costs and performances of its active components. To make things
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Figure 83: A CDO representing a computer configuration with any number of components.

interesting, a performance boost of 5 will be applied to any configuration with multiple memory

chips that are all the same type (A or B).

Type Vendor Model Cost Perf

1 Graphics Invideo D-Force 200 10
2 Memory Slamsong DDR9 (B) 20 10
3 Sound Tortoise Bay Waves 50 10
4 Memory Slamsong DDR7 (A) 10 5
5 Graphics Invideo B-Force 100 7
6 Memory Slamsong DDR7 (A) 0 5
7 Sound Slamsong Puddle 0 1
8 Graphics Slamsong A-Force 0 2

Table 14: Components to consider for computer configuration example. Existing components have zero cost.

We collect all of the constraints necessary to represent these 8 components into a LISP variable

called *available-components* (full source code is available in Appendix C). The LISP code

below prints the first solution from the constrained search space, including the summed cost and

performance of all active components (those with a * next to them).

> (solutions

(computer-configuration

*available-components*)

:one)
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;; Configuration (cost:380, perf:50):

;; 1. * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; 2. * [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

;; 3. * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; 4. * [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

;; 5. * [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; 6. * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

;; 7. * [SOUND] SLAMSONG Puddle (c:0, p:1)

;; 8. * [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

If we interpret this solution as a recommended configuration, it suggest our computer should have

3 graphics cards, two sound cards, and 3 memory chips of varying types. A typical desktop

computer, however, will only have a single graphics/sound card, and one or two memory chips.

We will further constrain the solution space by enforcing the constraints in Table 15. Our computer

will only have 4 components slots, and must have 1 graphics card, 1 sound card, and 1 or 2

memory chips.

Constraint Description

max-4-active A maximum of 4 components may be active in any configuration.
only-1-graphics-card A configuration must have one graphics card.
only-1-sound-card A configuration must have one sound card.
1-or-2-memory A configuration must have 1 or 2 memory chips.

Table 15: Default constraints for computer configuration example.

Collecting the constraints from Table 15 into a LISP variable called *default-constraints*, let’s

look at the first solution again:

> (solutions

(computer-configuration

*all-components*

*default-constraints*)

:one)

;; Configuration (cost:280, perf:35):

;; 1. * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; 2. * [MEMORY] SLAMSONG DRR9 B (c:20, p:10)

;; 3. * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; 4. * [MEMORY] SLAMSONG DRR7 A (c:10, p:5)

;; 5. [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; 6. [MEMORY] SLAMSONG DRR7 A (c:0, p:5)
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;; 7. [SOUND] SLAMSONG Puddle (c:0, p:1)

;; 8. [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

Now only 4 components are active, and we have the correct number of component types for our

system. Note that the performance is precisely the sum of the individual component performances

because our memory chips are of different types. This configuration includes all new, high

performance components, and may be the most expensive option. What would a solution look like

if we didn’t want to spend any money (i.e., use only existing components)?

;; One solution, force no cost

> (solutions

(computer-configuration

*all-components*

*default-constraints*

;; Apply constraint across all components

(every

;; If a component is active...

(if (equale (e@ component role) active)

;; ...its cost must equal zero.

(equalv (v@ (component details product) cost) 0))

(n@ components)))

:one)

;; Configuration (cost:0, perf:8):

;; 1. [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; 2. [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

;; 3. [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; 4. [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

;; 5. [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; 6. * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

;; 7. * [SOUND] SLAMSONG Puddle (c:0, p:1)

;; 8. * [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

While this configuration is definitely cheaper than the previous one, its less than a quarter of the

performance. Ideally, we’d like to explore the entire (constrained) solution space, and sort all

solutions by their cost and performance numbers. The CDO framework supports this type of

search via user-defined utility and objective functions.

16.3.5 Utility and Objective Functions

In addition to :all and :one, the solutions function accepts requests for the :best solution(s).

The extra keyword arguments :utility-fun and :objective-fun are user-defined functions for
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assessing the value of a given solution (its utility), and for sorting the utility values (the objective).

The example below defines a new function performance-utility that simply extracts a

configuration’s performance value. The built-in > function serves as our objective function, putting

higher utility values (better performing solutions) on top. All solutions with the “best” utility

value in the explored solution space are returned.

;; Extract the summed performance

(defun performance-utility (cfg)

(v@ (cfg) performance))

;; Best performance

> (solutions

(computer-configuration

*available-components*

*default-constraints*)

:best

:utility-fun #’performance-utility

:objective-fun #’>)

;; Configuration (cost:280, perf:35):

;; 1. * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; 2. * [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

;; 3. * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; 4. * [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

;; 5. [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; 6. [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

;; 7. [SOUND] SLAMSONG Puddle (c:0, p:1)

;; 8. [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

;; Configuration (cost:270, perf:35):

;; 1. * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; 2. * [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

;; 3. * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; 4. [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

;; 5. [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; 6. * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

;; 7. [SOUND] SLAMSONG Puddle (c:0, p:1)

;; 8. [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

;; Configuration (cost:260, perf:35):

;; 1. * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; 2. [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

;; 3. * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; 4. * [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

;; 5. [GRAPHICS] INVIDEO B-Force (c:100, p:7)
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;; 6. * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

;; 7. [SOUND] SLAMSONG Puddle (c:0, p:1)

;; 8. [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

Three solutions with a performance value of 35 (the maximum) exist in the solution space. The first

solution should look familiar: a recommendation to purchase all new components. The second

solution, however, achieves the same performance with a lower cost by reusing the existing DDR7

memory chip. The final solution reduces the cost further by purchasing a new, lower-performing,

DDR7 chip instead of the new DDR9 chip. This is due to the memory performance boost

mentioned earlier – a bonus 5 points are added to any configuration with multiple memory chips of

the same type (A or B). Conceptually (and verbosely), the memory boost constraint looks like this:

;; Get the sum of all component performance numbers.

(let ((cfg-performance

(sum (mapc (v@ (component performance)) (n@ components)))))

;; Give +5 to configs with same memory types.

(if (and

;; If at least 2 active memory components...

(at-least 2 (and (equale (e@ component role) active)

(equale (e@ component type) memory)))

(or

;; ...each active memory chip must be type A...

(every (if (and (equale (e@ component role) active)

(equale (e@ component type) memory))

(equale (e@ component type memory m-type) A))

(n@ components))

;; ...or type B.

(every (if (and (equale (e@ component role) active)

(equale (e@ component type) memory))

(equale (e@ component type memory m-type) B))

(n@ components)))

;; If the memory chips are the same type, give the boost...

(equalv (v@ (configuration) performance)

(+ 5 cfg-performance))

;; ...otherwise, just return the sum of performances.

(equalv (v@ (configuration) performance)

cfg-performance))))

Multi-Objective Functions. As a last demonstration, we will show how multi-objective functions

can be used to order a solution space across multiple dimensions. The previous example used
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performance-utility to sort by performance alone. When performances are highest and

equivalent, we would like to also minimize costs. This can be done manually for our computer

configuration example because there are only 3 solutions with the maximum performance, but

there may be many more in the general case.

The LISP code below defines a new utility function performance-and-cost-utility that creates a

two-element list for each configuration with the performance value first and the cost value second.

The next function, better-2, sorts solutions for the highest performance first, and the lowest cost

second. With this as our objective function, we should get the best performing configuration with

the lowest cost value. Indeed, running solutions with the new function returns a single solution:

the configuration with mostly new components that purchases a DDR7 memory chip! A graphical

depiction of this solution is shown in Figure 84 with component 6 enlarged to show excluded

choice points and the values of attached variables.

;; Extract performance and cost as a list

(defun performance-and-cost-utility (cfg)

(list

(v@ (cfg) performance)

(v@ (cfg) cost)))

;; Highest performance (first), lowest cost (second)

(defun better-2 (a b)

(cond

;; Performances equal - compare costs

((eq (first a) (first b)) (< (second a) (second b)))

;; Compare performances

(t (> (first a) (first b)))))

;; Best performance with lowest cost

> (solutions

(computer-configuration

*available-components*

*default-constraints*)

:best

:utility-fun #’performance-and-cost-utility

:objective-fun #’better-2)

;; Configuration (cost:260, perf:35):

;; 1. * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; 2. [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

;; 3. * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; 4. * [MEMORY] SLAMSONG DRR7, A (c:10, p:5)
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;; 5. [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; 6. * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

;; 7. [SOUND] SLAMSONG Puddle (c:0, p:1)

;; 8. [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

Figure 84: Graphical representation of a single solution. One component is expanded to show excluded choice points
and variable values.

16.3.6 Constraint Knowledge and Cognition

The computer and ball examples above demonstrate interesting ways to use CDOs, but the

cognitive aspect of these domain ontologies may not be immediately apparent. Depending on how

they are designed and searched, CDO solution spaces can be used to abduce likely explanations

from evidence, deduce the remainder of incomplete knowledge, and induce possible consequences

from observed (or desired) actions.

In A Framework for Modeling and Simulation of the Artificial, Douglass et al. describe a situated,

autonomous agent that searches rooms in a task environment for a reward [33]. The agent contains
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a library of behaviors, called behavior models, which detail how the agent can achieve a specific

sub-task. A CDO is used to map situational factors, such as the overall state of the task and current

percepts, to specific behaviors. In other words, the agent’s CDO helps the agent decide what to do

next. This same CDO could also be used to go the other direction: from behaviors to percepts.

Given a set of asserted behaviors, the CDO’s solution space will contain all percepts relevant to

their selection. If the agent had determined a candidate set of next behaviors based on some other

knowledge, these inferred percepts would tell the agent what to look for in the environment in order

to exclude candidate behaviors.

Section 18 describes a CDO-based model of program comprehension, called Nibbles. This model

represents programs using a CDO, and knowledge of the Python programming language as

constraints. Over time, Nibbles builds a “mental model” of a program, line-by-line, and is capable

of inferring token, line, and line group semantics from raw text. Importantly, Nibbles is also

capable of making errors due to code ambiguities and invalid expectations.
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17 Part 3: Mr. Bits

The Mr. Bits model operationalizes components of Cant et. al’s Cognitive Complexity Metric [16]

(CCM) within the ACT-R cognitive architecture [3]. Mr. Bits gets its name from the Mr. Chips

model of text reading [57]: a simple character-based model that minimizes fixations to

disambiguate words. Unlike Mr. Chips, Mr. Bits reads small Python programs, and types their

printed output. Mr. Bits minimizes fixations by remembering what has been read, and by only

fixating novel or forgotten lines of code. Using Python’s built-in debugger, Mr. Bits transforms

Python programs into ACT-R scripts which simulate a programmer “reading” and evaluating the

program within the eyeCode experiment interface (Figure 85). The final output is a series of

human-like fixations and keystroke timings which, when plotted on top of the program’s code

(Figure 86), look similar to human eye-tracking trials from the eyeCode experiment (Section 12).

The chunking and tracing processes described in the CCM are realized through ACT-R’s

declarative memory and visual modules (specially, EMMA [76]). Keystrokes are also simulated via

the ACT-R motor module, which utilizes Fitts Law [41].

Figure 85: Interface used by human programmers in the eyeCode experiment. Mr. Bits uses the same interface.

While Mr. Bits appears to read and evaluate a program from scratch, the model does not actually

parse text or determine the evaluation order of lines, and therefore cannot make errors. Despite

this limitation, the model serves as a starting point for a truly quantitative, cognitive model of
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program comprehension. Mr. Bits produces human-like eye movements and keystrokes by

“reading” over code tokens, recalling variable values from memory, and performing mental

arithmetic. A second model, called Nibbles (Section 18), complements Mr. Bits by transforming

raw text into an internal (mental) representation of the underlying program. This mental model

can be used to determine what to do next during each step of evaluation. Future work will

integrate the Mr. Bits and Nibbles models, removing the need for the Python debugger. The

following sections describe the details of Mr. Bits, and Section 17.5 compares the model’s output to

human data collected from the same 24 Python programs in the eyeCode experiment [46].

Figure 86: Mr. Bits fixation plot for between functions program.

17.1 Architecture

Mr. Bits takes a Python program (a text file) as input, and produces a time series of fixations and

keystrokes as output. In between, there are three important stages (Figure 87): (1) the built-in

Python debugger is used to parse and evaluate the program, (2) an ACT-R LISP script is generated

with a program-specific goal stack for each step of the evaluation, and (3) the ACT-R script is

executed, and the resulting trace is transformed into fixation/keystroke timings. These data can

then be compared to human data to, for example, see if human programmers and Mr. Bits spent

the same amount of relative time on each line of the program.

The first stage of the Mr. Bits model parses and evaluates a Python program using the built-in
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Figure 87: Mr. Bits model workflow. Code is transformed into fixation and response timings via Python and ACT-R.

Python debugger. The output from this stage is a series of code lines in evaluation order, and the

values of each variable during the course of evaluation. Note that the ACT-R portion of Mr. Bits

does not parse or evaluate code. This is the focus of our second model, Nibbles (see Section 18). As

the Python program is parsed, variables are tagged with contextual information, such as which

function they are defined in and how many times they are assigned to. When program evaluation

is simulated in ACT-R, Mr. Bits uses this information to resolve variable ambiguities, and trace to

specific code locations for variable values.

During the second stage, a self-contained LISP script is generated with a complete visicon (visual

locations of code words), a goal stack with each step of program evaluation, and a collection of

general-purpose productions for reading/remembering text, tracing variable values, and typing

responses. A complete example LISP script for the funcall space program is available in

Appendix D. The Visual, Declarative, and Manual ACT-R modules are relied upon to generate

human-like timings (see Figure 80 for a description of each module). The goal stack contains four

general categories of goals:

1. Look at/remember line - The leftmost word of every evaluated code line is first fixated by
the Visual module. A declarative memory request for the “details” of the line is made and, if
not present, every word in the line is fixated from left to right.

2. Store variable value/location/reference - Every assignment statement, for loop, or mutable
function call (e.g., list.append) results in a new declarative memory chunk with the target
variable’s name, context, and physical location. Future attempts to recall the variable’s value
will require at least one trace to this location before the value is stored in declarative memory.
Calls to functions defined in the same program (e.g., def f(x)) create a series of variable
reference chunks, linking the function’s parameters to the supplied arguments. Future
requests for a function’s parameter value will cause Mr. Bits to follow the reference back to
the call site arguments (e.g., f(1)).

3. Recall variable value - When a variable’s value is needed (for a computation, printing, etc.),
a declarative memory request is made for the exact name in the context of the current
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Goal ACT-R Module(s) Description

Go to line Visual/DM Moves the virtual eyes to the first character of a
line. If the details of the line cannot be retrieved
from memory, every token is read.

Remember line DM Stores the details of the current line in memory.

Recall variable Visual/DM Attempts to retrieve the value of a variable from
memory. Failure results in a retrieval of the vari-
able’s location, a visual trace to it, and storage of
the result in memory.

Store variable DM Stores a variable’s value in memory.

Compute sum/product DM Retrieves a sum or product from memory.

Compare numbers DM Retrieves a numeric relationship (less/greater
than) from memory.

Evaluate Boolean expression DM Retrieves the result of a boolean expression
(AND/OR) from memory.

Fixate output box Visual Locates the output box on the screen and fixates
the upper-left corner.

Type response Manual Types a text response, character by character.

Table 16: Possible goals in the Mr. Bits model. DM stands for Declarative Memory.

function. If not present, Mr. Bits attempts to recall the variable’s physical location, follow
references to other variables, or consult previous variable definitions with the same name. If
all else fails, the process is repeated within the previous context (either another function or
the global context). The values of traced variables are stored in declarative memory, so future
retrievals will succeed until the value is forgotten.

4. Typing responses - Every print statement produces a set of goals, causing Mr. Bits to fixate
the experiment’s output box, type each character of the response, and re-fixate the previous
line. When program evaluation is complete, Mr. Bits will fixate the “continue” button, move
its hand to the virtual mouse, and click the button to end the trial (see Figure 85).

State Transition Diagram. Figure 88 shows a state-transition diagram for the ACT-R simulation

(final stage) of Mr. Bits. At a high level, goals are processed one by one from the goal stack

produced during the previous model stage. When the goal stack is empty, Mr. Bits clicks the

continue button to end the trial. Table 16 describes each goal in detail as well as the specific ACT-R

modules involved. The declarative memory module is used heavily, with processes like variable

look-up and arithmetic cast as memory retrievals (a common practice in ACT-R modeling [3]).
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Figure 88: General state diagram for a Mr. Bits ACT-R script. States highlighted in yellow may have variable timings
when ACT-R’s sub-symbolic mode is enabled.
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The Goal Stack. A sample program and goal stack produced by Mr. Bits is shown in Figure 89.

The fixation timeline on the right-hand side of the figure shows the model fixating specific code

lines and the output box when typing responses. While Mr. Bits’ goal stack is pre-populated

during the parsing stage, the fixations generated during model execution depend on dynamic

factors. First, code lines are only read (i.e., each whitespace-separated token is fixated) if they have

not been viewed before. Second, variable values are only stored in the model’s declarative memory

(DM) once they have been traced. As a result, Mr. Bits will shift visual attention to variable values

as they are needed. Finally, when ACT-R’s sub-symbolic behavior is enabled (described in

Section 17.3), declarative memory retrievals for code lines and variable values can fail after enough

time has passed and their DM activations have fallen below threshold. In other words, Mr. Bits can

forget. On the other side of the coin, sub-symbolic behavior will speed up the retrieval of

frequently and recently used chunks. Often-used arithmetic facts, such as 5× 8 = 40, may have

increased activation in memory, resulting in faster in-situ retrievals. Existing DM chunks and

activations at the start of a trial represent Mr. Bits’ long-term experience, while accumulated post-trial

chunks/activations represent short-term learning. We do not currently retain short-term learned

information across Mr. Bits trials, though this would be an interesting path for future research.

Figure 89: Example of a Mr. Bits goal stack (center) for a Python program (left). Processing the goals produces
fixations and keystrokes (right).
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17.2 Variables and Context

In the scope of our simple Python programs, a variable has three pieces of information that

uniquely identify it. First, the surrounding function name is used to differentiate global and local

function scope. Mr. Bits will use the local function scope first when resolving a variable by name.

Second, the number of times a function has been called – its “function call index” – helps

distinguish between multiple calls to the same function. In Figure 90, f(x) is called twice, and so

the local x variable within f will potentially have different values during each call. Mr. Bits

considers these two “versions” of x to be separate, but related, variables.

Lastly, variables can be reassigned within the same scope and function call index. In Figure 90, the

variable a (in the global scope) is assigned a value twice. Mr. Bits treats these as two different

variable definitions with the same name, and will always trace to the most recent definition first

(i.e., the definition with the highest line number in the current scope).

Figure 90: Variable context

These three pieces of information: function scope, function call index, and definition number, allow

Mr. Bits to uniquely identify variables in each of our sample Python programs. More complex

programs, especially those with class definitions, will require extensions to this basic notion of

variable context. Presently, Mr. Bits locates values from the right-hand side of assignment

statements (e.g., x = 5) and passed as function arguments (e.g., f(5)). With classes, it will be

necessary to maintain the type information for each definition of a variable. Python allows

variables to change type when reassigned, so the expression x.foo(5) may be dispatched to

different code depending on the (current) type of x. We leave these extensions as future work.
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17.3 Sub-symbolic Chunking and Tracing

ACT-R can operate in symbolic or sub-symbolic mode. In the former mode, all ACT-R modules

(visual, memory, etc.) behave with consistent timings. For example, the declarative memory

module in symbolic mode will retrieve chunks immediately, bypassing the activation calculus.

When sub-symbolic behavior is enabled, however, retrieval times will depend on the frequency

and recency of a chunk’s use. Additionally, a chunk can be “forgotten” if its activation falls below a

critical threshold (see rt in Table 17). Mr. Bits relies heavily on declarative memory for

remembering code line details, variable values, traced locations, and arithmetic/boolean facts (see

Section 17.4) for details). In sub-symbolic mode, Mr. Bits will get faster at remembering a recently

or often-used variable value. These values can also be forgotten over time, though none of our

sample programs are long enough to demonstrate this behavior.

The activation calculus in ACT-R subsumes the two familiarity parameters in the Cognitive

Complexity Metric (Section 16.1). The RF and TF parameters, respectively chunk and trace

familiarity, are operationalized as retrieval latency in declarative memory. Frequently-used, or

familiar, code lines, variable values, and trace locations will be retrieved quickly whereas less

familiar items will take more time. If we equate cognitive complexity with the time it takes Mr. Bits

to read through a program, this successfully captures the intentions of the familiarity CCM

parameters because programs with many unique operations will take longer to evaluate.

A total of 5 ACT-R parameters have been given non-default values in Mr. Bits (Table 17). The

latency factor (lf) and retrieval threshold (rf) parameters were set via an informal search, in order

to better fit the human data. These two declarative memory parameters are among the most

frequently modified ACT-R parameters, and the chosen values are within the ranges used in other

human studies [107]. The imaginal-delay parameter was set to 0 in order to quickly move newly

created chunks from the imaginal buffer into declarative memory. Mr. Bits does not use the

imaginal buffer to hold a representation of the current line or variable, so there is no modeling

need for a delay. Lastly, the two motor parameters (feature preparation and burst time delays)

were reduced by a factor of 15 in order to account for programmers’ above average typing speeds.

As with the declarative memory parameters, an informal search was used to produce visibly

similar behavior relative to human trials. Neither motor parameter has an entry in the Max Planck
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ACT-R Parameter Default Value Description

lf 1.0 0.01 Latency factor (F in the retrieval equation).

rt 0.0 -2.0 Retrieval threshold. Minimum activation for re-
trieval.

imaginal-delay 0.2 0.0 Delay in seconds for imaginal buffer request.

motor-feature-prep-time 0.05 0.001 Time in seconds to prepare each movement fea-
ture.

motor-burst-time 0.05 0.001 Minimum time in seconds for any motor move-
ment.

Table 17: ACT-R parameters with non-default values used in Mr. Bits.

Institute for Human Development’s ACT-R parameter database [107], so it is unknown whether

our values are cognitively plausible.

17.4 Sums, Comparisons, and Boolean Expressions

Mr. Bits computes sums/products/differences, does numeric comparisons (x < y), and evaluates

simple boolean expressions (x ∧ y) using declarative memory. Each of these “facts” resides in Mr.

Bits’ declarative memory – e.g., the sum of 2 and 3 is 5 – and has been given a high base level

activation, representing that they are very well rehearsed. We do not model an explicit process of

addition, subtraction, etc., such as counting up or down from an anchoring number, because (1)

virtually all numeric operations in our simple Python programs are done with small operands, and

(2) participants in the eyeCode experiment were experienced enough to have memorized these

basic mathematical facts. ACT-R models of basic arithmetic exist [3], but we assume our

participants have internalized these facts directly in long-term memory.

When Mr. Bits “computes” the sum of two numbers, x and y, a declarative memory retrieval is

initiated with the constraints that it must be a sum-fact whose operands are x and y. Operations

with more than two operands are serialized into multiple retrievals, each with only two operands.

For example, the sum 1 ∗ 2 + 3 would be transformed into two retrievals:

1. A prod-fact with operands 1 and 2 (result: 2),

2. A sum-fact with operands 2 and 3 (result: 5)
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Mr. Bits relies on the Python debugger to determine the order of operations, and so is not capable

of making arithmetical errors as long as its declarative memory facts are consistent.

If ACT-R’s subsymbolic behavior is disabled, there is little difference between declarative memory

and a database. With subsymbolic effects, however, subsequent retrievals of the same fact will be

faster, especially when done in quick succession. For example, Mr. Bits will take less time to

compute (2× 2) + (2× 2) than (2× 2) + (2× 3) because, in the former case, the fact that 2× 2 = 4

will be retrieved quicker the second time. Because chunks in ACT-R’s declarative memory have an

activation value, the same system can model both long-term and short-term/working memory [92].

Capacity limitations for short-term memory appear in ACT-R as a side effect due to (1) the ability

to retrieve only one chunk at a time, and (2) the time costs associated with retrievals and

productions (steps in the model). Only a fixed number of chunks can be attended to before

activation decay becomes a factor in retrieval. Cognitive theories of program complexity often cite

Miller’s Magic Number [63] as a potential source of complexity – e.g., having a programmer attend

to too many things simultaneously in a snippet of code will make it harder to

understand [96, 24, 68]. Mr. Bits will behave as if it has these capacity limitations, but they are an

emergent property of declarative memory, not an arbitrary constant.

Mr. Bits currently contains sum, product, difference, less-than, and greater-than facts for numbers

zero to ten. In order to model more experienced programmers, additional facts could be added to

declarative memory. For example, intermediate and advanced programmers will quickly note that

2× 2× 2 = 23 = 8, and not need to mentally compute the intermediary products.

17.5 Results and Discussion

In order to evaluate Mr. Bits, we compare the model’s performance on 24 of the 25 programs used

in our eyeCode experiment [46] with data from the 29 human programmers. All model runs used

the same ACT-R parameters, as described in Table 17. We considered 4 different versions of Mr.

Bits, each with combination of two options. The first option was having ACT-R’s subsymbolic

computing turned on (SSC) or off (SC). Second, Mr. Bits had the ability to either perfectly

remember list variables (RL) or forget list variables (FL). The reasons for this second option are

described in more detail below.
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17.5.1 Human-Model Comparison

We compared the relative spent on each line of each program by Mr. Bits to the time spent by our

human participants. For some programs, a large difference is visually apparent (Figure 91, human

data is on the left). If Mr. Bits is allowed to remember the values of all variables after tracing them,

it will avoid the need to continually refer back to lists (like x and y) as humans do. We created a

setting for Mr. Bits that stopped it from remembering non-empty list variable values, forcing the

model to trace those variables over and over. With this setting enabled, the shift in where time is

spent is again visually apparent (Figure 92), and appears closer to the human data. The two

versions of Mr. Bits, with the setting disabled or enabled, are referred to as RL (Remember Lists)

and FL (Forget Lists). Combined with the option to place ACT-R in symbolic or sub-symbolic

mode, we have four different versions of Mr. Bits to compare against human data:

Figure 91: Relative time spent on each line of between functions by human participants (left) and Mr. Bits
Remember Lists (right).

1. SC + RL - Symbolic Computing + Remember Lists. All declarative memory retrievals return
immediately, and lists can be fully remembered.

2. SC + FL - Symbolic Computing + Forget Lists. All declarative memory retrievals return
immediately, and lists are traced every time.

3. SSC + RL - Sub-Symbolic Computing + Remember Lists. All declarative memory retrievals
return immediately, and lists can be fully remembered.

4. SSC + FL - Sub-Symbolic Computing + Forget Lists. All declarative memory retrievals return

immediately, and lists are traced every time.

Which version of Mr. Bits correlates best with human data? We compared model runs from each

version to human data for each program by computing the Spearman correlation between the
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Figure 92: Relative time spent on each line of between functions by human participants (left) and Mr. Bits Forget
Lists (right).

human and model average times spent on each line. In addition, we created two much simpler

“null” models for baseline comparison: called line length and line number. For the line length

model, relative time spent on each line is simply proportional to its length, so longer lines will

receive more time. In the line number model, line time is inversely proportional to line number, so

lines appearing earlier in the program will receive more time. Figure 93 provides an example of

each null model using the between functions program.

Figure 93: Examples of relative line times generated from the two null models: line length (left) and line number
(right).

The complete correlation matrix for all four versions of Mr. Bits and the two null models is shown

in Figure 94. For each program and each model, the Spearman correlation is computed using the

average times spent on each line for the model and our human programmers. A higher, green

value indicates a strong positive correlation while a higher, redder value means a strong negative
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correlation with the human data. Correlation values not meeting the α = 0.05 significance criteria

or below 20 (0.2) are not displayed (though their cells are still colored).

Figure 94: Correlations between relative time spent on each line for human trials, 4 versions of Mr. Bits, and two
simple models based on line length and number.

If we take the sum of correlation values as our success criteria, then the line length and SSC+FL

(subsymbolic computing + forget lists) models come out on top, followed somewhat closely by

SC+FL, SSC+RL, and SC+RL 22. This success criteria and the use of correlations here is not

intended to provide a statistical argument for one model over another. Instead, we simply take

these results as evidence for two things: (1) forgetting lists is a useful model setting, and (2) line

length is a strong contributor to the average time the eyeCode participants spent on each line.

While it is common to accept a simpler model in favor of a more complex one (e.g., line length vs.

any Mr. Bits version), our goal with Mr. Bits is not just to achieve a good fit with the human data.

We wish for our model to also provide an explanation of the programmer’s underlying cognitive

processes. The time spent by Mr. Bits on each line is not just a function of its character length, but

22The line number model trails far behind the others, so we do not consider it further.
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also depends on when and how frequently the line is viewed. When combined with the Nibbles

model (see Future Work in Section 19.1), it will be possible for the model to spend less time on

more idiomatic lines – i.e., those fitting a commonly-seen template.

17.5.2 Human Trial Times

We now compare the total time taken by Mr. Bits and humans to read and evaluate each program.

This “trial time” is a useful summary metric if we assume that more cognitively complex programs

should take longer to understand and predict their output. Intuitively, we might assume this is a

function of program length, but with the added twist that commonly-used or repeated patterns

will speed participants along. Unfortunately, errors break these assumptions because failing to

properly evaluate portions of the program may result in a smaller trial time (or vice-versa,

depending on the program). Therefore, we must be aware of the correctness of a human trial in

addition to its length when comparing it to Mr. Bits.

The distributions of human trial times across 24 Python programs is shown in Figure 95. For each

program, the individual trial times (bars) have been sorted from shortest to longest, and the trials

with incorrect responses have been colored red. The (single) trial times for all four versions of Mr.

Bits (with or without subsymbolic, remembering or forgetting lists), are shown as lines, plotted

where they would fall in the sorting process. In some program sets, such funcall, there is no

difference between the remember lists (RL) and forget lists (FL) versions of Mr. Bits because these

programs do not contain lists.

With few exceptions, incorrect human trials do not appear strongly correlated with trial time. The

two notable exceptions are counting twospaces (Appendix A.2.2) and scope samename

(Appendix A.9.2). The former is easily explainable: the most common error (not including the

second print statement inside the loop body) significantly reduces the amount of expected output,

and therefore the number of response characters the participant must type. The scope samename

error pattern is not as easy to explain, and may simply be a fluke. Regardless, it is visually

apparent that Mr. Bits’ trial times tend to fall in the middle of the human distributions. An

interesting exception is overload strings, where Mr. Bits takes longer than any human

participant when ACT-R’s subsymbolic mode is engaged. This is likely due to ACT-R’s manual
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Figure 95: Mr. Bits trial times (4 versions) compared to human trial time distributions for each program. Incorrect
trials are colored red.
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(typing) module; its subsymbolic timings are subject to Fitts Law. Because this program involves

typing English words like “bye” and “penny”, participants are likely to be much faster than Mr.

Bits, for whom “nypen” is just as slow to type as “penny”.

17.5.3 Trial Time as a Complexity Metric

Because Mr. Bits’ trial times track human performance (with some caveats mentioned above), it

may be useful as a complexity metric for ranking programs (or versions of a program) by how

difficult they would be to understand. Figure 96 contains a Spearman correlation matrix for the

trial times of all four Mr. Bits versions against four commonly-used complexity metrics: lines of

code, Cyclomatic Complexity [59], Halstead Volume [45], and number of output characters. Again,

non-significant (α = 0.05) correlations and correlation values less than 20 (0.2) are not printed.

Figure 96: Correlations between Mr. Bits trial times and code complexity metrics for all programs.

While the correlation matrix cannot directly tell us whether or not Mr. Bits’ trial time (henceforth

referred to as MBTT) is a useful complexity metric, we can at least see that it is not strongly

correlated with any of the common source code metrics. In other words, MBTT is not simply

restating the fact that a program has many lines or conditional statements (Cyclomatic Complexity).
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Interestingly, all versions of MBTT are moderately correlated with Halstead Volume, which is

derived from the ratios of unique and total operators and operands. More research is needed to

untangle this relationship, but we expect the way Mr. Bits computes sums and products to play a

major role (Section 17.4). Lastly, the moderate to strong correlations between MBTT and output

chars is expected because Mr. Bits must type a response for each program. It is good news too that

the MBTT/output chars correlations are not very strong or perfect. This would suggest that Mr.

Bits’ trial times are almost entirely driven by its typing speed! Overall, the correlation matrix

provides evidence for the potential utility of MBTT as a code complexity metric. An obvious path

for future work (Section 19.1) would be to extend Mr. Bits to work on a larger subset of Python and

run the model on a large collection of open source programs (e.g., from GitHub or SourceForge).

17.5.4 Limitations and Threats to Validity

Mr. Bits has a number of limitations and specific design choices that may threaten its validity as a

model of human program comprehension. First and foremost, the model cannot make errors. This

is due to the fact that Mr. Bits does not parse code, and therefore cannot internalize an incorrect

program. Our other model, Nibbles (Section 18), does just this, but does not predict fixations and

keystroke timings like Mr. Bits does. Unlike a human too, Mr. Bits fixates each and every word

when reading a line (the line is skipped if it can be recalled from memory). This is not how humans

read natural language text [72], and it is clear from our experimental data that this is not how

programmers read code either. A more comprehensive model combining Mr. Bits and Nibbles

would be capable of inferring unobserved code words or tokens, and avoid the need to fixate them.

Eye-tracking studies of programmers have shown that keywords are the least fixated tokens in a

program, providing evidence that easily inferred tokens (e.g., the in keyword in for x in y) are

often skipped [14].

Python programs with user-defined classes, generators, and other advanced language features are

not currently supported by Mr. Bits. Additionally, the program must be script-like – i.e., compute

and print values to the terminal. There are many other kinds of programs, such as those with a

graphical interface, but Mr. Bits has been designed to work with a single task: output prediction.

Additionally, Mr. Bits’ code environment is quite bare-bones compared to modern integrated
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development environments (IDEs). Syntax highlighting alone could drastically change the model,

and is currently being investigated in the context of Nibbles.

Finally, the LISP scripts generated by Mr. Bits will likely give ACT-R modelers pause. Unlike most

ACT-R models, Mr. Bits scripts contain dozens of productions. Because each production in an

ACT-R model is (in many ways) a free parameter, it is not possible to argue that their specific

combination represents the best possible model when there are dozens of productions. While we

cannot argue for our individual productions, we can still find value in the high-level behavior of

Mr. Bits. ACT-R imposes constraints on how its modules interact, and how long particular actions

take (e.g., shifting visual attention). Thus, Mr. Bits will exhibit different macro behaviors when

particular programs emphasize different modules by, for example, having information physically

more spread out or by including many unrelated calculations. In this way, Mr. Bits serves as a

framework for describing human program comprehension and, most importantly, as a model

whose high-level predictions can be falsified by future experiments.
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18 Part 3: Nibbles

The Mr. Bits model builds on top of the ACT-R cognitive architecture to produce human-like

fixation and keystroke timings while evaluating simple Python programs (Section 17). Mr. Bits

does not, however, actually parse text into an internal representation and determine the evaluation

order of program lines. For this purpose, we propose Nibbles, a model of program comprehension

that makes use of Cognitive Domain Ontologies, or CDOs, to internally represent a program

(Section 16.3). The process of searching for the first constraint compliant solution in the CDO’s

solution space allows Nibbles to handle missing text and local ambiguities. Future work will join

the Nibbles and Mr. Bits models to produce an end-to-end model capable of transforming raw text

into human-like fixations and keystroke timings.

18.1 Choice Point Uses

Formally, Nibbles represents a program using a Cognitive Domain Ontology, or CDO. A CDO is a

tree with entities and relations, together describing a space of possible “solutions” – a specific

instance of the CDO tree with all choices fixed. With a set of domain and/or situation-specific

constraints, a constraint solver is used to prune the tree and enumerate one or more

constraint-compliant solutions. The choice point relation is special, in that only one of its child

entities may be present in a given solution. Choice points are the source of generativity in a CDO,

and Nibbles uses them in four important ways: (1) to classify entities, (2) to determine group

membership, (3) to control the size of the solution space, (4) to express a preference or expectation.

We expand on each of these uses of choice points below.

(1) Choice points can be used to classify or categorize a particular entity. For example, the Line

Type choice point in the Nibbles CDO (Figure 99) classifies a Line entity as either a function call,

variable assignment, etc. When searching for solutions, each of these choices will be enumerated

and checked against the constraints. Every constraint-compliant solution will contain a single

choice for every active choice point.

(2) Lines are grouped by Nibbles using spatial and semantic cues. Relative indentation and line

type (e.g., a for loop), will determine if the current and nearby lines form a cohesive group (e.g., a

for loop plus its body). The Group Role choice point can either be Active or Inactive for every line
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in every line group. Each Line Group contains all lines in the program, initially with an

indeterminate Group Role. When Active, Nibbles will enforce additional constraints to ensure that

a line is only active in one group, and that the given line type fits within the group. This is not a

classification of lines, but is instead an indication of a line’s membership in a group.

(3) In addition to classification and group membership, Nibbles uses choice points to limit the

size of the CDO solution space. At every level of the CDO tree, a Detail Level choice point

controls whether instances at that level will be High or Low detail. If High detail is set for every

Detail Level, the complete solution space is available – down to the character level of every word in

the program. Without high performance computing resources, however, it is practically infeasible

to enumerate all solutions for programs with only 5 lines or less. Nibbles is able to explore much

larger programs by carefully controlling the detail level such that only the currently attended line

is set to High detail. Using a form of attention, then, Nibbles is able to tame large solution spaces

without being exposed to the full brunt of the combinatorics.

(4) Lastly, we use choice points in Nibbles to express a preference or expectation. The scope

diffname example in Section 18.5.3 extends Nibbles’ CDO with a Transaction Status choice point at

the Line level (Figure 100). The first choice, Complete, enables a set of constraints on the line’s

tokens. If the tokens survive these constraints, the line will be interpreted as a Complete

transaction. If not, however, the line will be marked as an Incomplete transaction, and the current

CDO tree will still be a candidate solution. This use of choice points allows for “softer” constraints

that do not immediately discount a given solution.

18.2 CSP and Text Interpretation

Nibbles parses and interprets text using three components: (1) a CDO tree to describe the structure

of the domain, (2) a collection of constraints to exclude non-sensical solutions, and (3) a constraint

solver to enumerate constraint compliant solutions from the domain (Screamer [88]). Each line of

code is provided to Nibbles with high fidelity, as if it were placed under a virtual fovea.

Figure 97 depicts the transformation of a simple three line program (bottom) into a “mental model”

representation in Nibbles (right). Using its existing knowledge of Python (constraints), Nibbles

abduces that the three lines form a single group, comprised of two assignment statements and one
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print statement. Furthermore, the types of variables a and b are inferred as well as the sense of the

overloaded plus (+) operator (numeric sum versus string append).

Figure 97: Information flow for Nibbles model. The interpretation of each line involves a trip to the constraint solver
and a subsequent re-ordering of choice points.

Nibbles reads programs incrementally line-by-line by focusing a character-aligned sensor (fovea)

on one line at a time. The observed characters are asserted into the CDO along with the following

information:

1. The sizes of unobserved tokens on the current line and the lines below and above.

2. The indent level of the line below (relative to the current line).

3. The lengths of unobserved lines.

4. The presence of text above and below the current line.

Figure 98 shows the first few steps of Nibbles reading the overload plusmixed program

(Appendix A.6.2). The complete program is on the left (highlighted for the reader’s benefit). On

the immediate right, unobserved characters are replaced with “?”. Spaces between blocks of “?”

represent the availability of token sizes, while entire lines of “?” reflect knowledge of line lengths.

Unobserved code is represented in the Nibbles CDO by setting the line group, line, or token type to

Unknown. Additionally, Low Detail choice points are used to dynamically control the size of the
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Figure 98: Incremental reading of a program. The first two lines of the program are observed, and the third line is
inferred. An I stands for an identifier, and an N stands for a number.

CDO solution space. Summary information, such as the size of a line or token, is stored in an

unobserved Low Detail choice. This will stop instance sets (of tokens, characters, etc.) under the

High Detail choice from being enumerated by the constraint solver, exponentially decreasing the

size of the entire space. This serves the dual purpose of speeding up the model and representing a

form of attention. With every High Detail choice set, exploring the space of even a five line

program can be computationally infeasible. See Section 18.1 for more details.

18.3 The Nibbles CDO

The structure of Nibbles’ CDO is shown in Figure 99. In it, a program is broken down in the

following components:

• Line Groups - Contiguous groups of related code lines that may or may not all be at the
same indent level.

• Lines - A single code line in a line group.

• Tokens - A single Python token/word in a line (usually separated by whitespace).

• Characters - A single character in a token.

In Nibbles, a program consists of one or more line groups, which are made of one or more lines, etc.

As previously described, nested instance sets at each level of the CDO hierarchy fall under a High

Detail choice. By toggling the detail level choice points, Nibbles can dynamically contract and
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expand the solution space. A particular solution for the Nibbles CDO will contain High Detail

information for currently observed code, and Low Detail (or Unknown) information for

previously/unobserved code.

Figure 99: Structure of the Nibbles CDO.

Line groups, lines, and tokens are categorized using the Line Group Type, Line Type, and Token

Type choice points. Table 18 contains an exhaustive list of each category, and a brief description of

how the category is verified by Nibbles’ constraints. Lines that contain an expression, such as the

right-hand side of a variable assignment, make use of the additional Line Expression structure to

determine the expression’s form and Python type. Table 19 lists the currently supported

forms/types, which focus just on single token and simple binary expressions (e.g., x + 1). Future
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work will expand this into a more comprehensive set.

Category Name Description

Line Group Other/Generic Default line group type (no other type matches).
Function A function definition. 1st line must a Function Def line, 2nd

line must be indented.
For Loop A for loop block. 1st line must be a For line, 2nd line must

be indented.
If Statement An for loop block. 1st line must be a For line, 2nd line must

be indented.

Line Function Def Starts with a def Keyword token, followed by a Name and
(optional) arguments.

Function Call Starts with a Name token, followed by (optional) argu-
ments.

Variable Assignment Starts with a Name token, followed by an = Symbol and an
expression.

For Line Starts with a for Keyword token, followed by a Name, in
Keyword, and either a Name or list literal.

If Line Starts with an if Keyword token, followed by an expres-
sion.

Print Starts with a print Keyword token, followed by an expres-
sion.

Return Starts with a return Keyword token, followed by an expres-
sion.

Blank Line contains only Whitespace tokens.

Token Symbol A non-alphanumeric token – =, (, etc.
Number A single string of numeric characters – e.g., 123.
Name A single string of alphabetic characters and underscores –

e.g., the list.
Keyword One of def, for, if, print, in, return.
String/Text Any string of characters that are not blank and not one of

the other types.
Whitespace/Blank A token that is entirely whitespace or of zero length.

Table 18: Types of tokens, lines, expressions, and line groups in Nibbles.

18.4 Programming Knowledge as Constraints

A CDO captures the structure of a domain as well as its constraints. Nibbles encodes knowledge of

Python into both. The textual structure of a program is represented hierarchically in Nibbles’ CDO,

as groups of lines, tokens, and characters. Constraints at every level of the hierarchy enforce

Python’s grammatical rules – e.g., the line after a function def must be indented. Table 20 provides
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Form Type Operator Description

Literal Number Basic numeric literal (123)
String Empty or non-empty string literal ("" or "hello")

Variable Number Variable name only (x).
String Variable name only (x).

Variable-Literal Number Sum Variable name and numeric literal (x + 1).
String Append Variable name and string literal (x + "hello").

Variable-Variable Number Sum Variable names only (x + y).
String Append Variable names only (x + y).

Table 19: Expression forms in Nibbles. Used in Print statements, Variable Assignments, etc.

high-level descriptions of Nibbles’ constraints on Line Groups, Lines, and Tokens.

Category Name Description

Line Group line-group-indent If lines A and B in same group, then B is either in-line with
A or indented.

all-lines-active Every line must be active in exactly 1 group, in line order.
lines-to-line-group Verifies a line group type based on 1st and 2nd active lines.

Line tokens-to-line Verifies a line type based on the first few tokens. The Vari-
able Assignment, Print, If Line, and Return line types have
their expression forms checked as well.

whitespace-at-end If a line contains blank and non-blank tokens, all Whites-
pace/Blank tokens must be at the end of the line.

Token chars-to-tokens Verifies a token type based on its characters. Anything
not entirely whitespace and not any other token type is
considered Text.

Table 20: Constraints in the Nibbles model.

In the Screamer constraint solver, constraints are really just Common LISP functions that inspect

proposed sections of the CDO tree and produce failures when specific checks are violated. Because

of this, it can be difficult to describe precisely what constraints are doing without using the code

itself. While this assumes a familiarity with Common LISP, the Screamer (and Screamer+)

constraint language, and the codified Nibbles CDO structure, it is still possible to meaningfully

understand the constraints without them. Listing 3, for example, shows a snippet of the constraint

the verifies tokens based on characters. In this particular snippet, a print keyword has been

proposed, and is verified by a set of assertions. Even without the necessary background, this
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constraint snippet is fairly readable – i.e., it is clear precisely how specific characters are being

checked.

(cond

((eq token-type ’keyword-type)

(assert!

(or

;; print keyword

(and

(equalv keyword-kw ’print)

(equalv (nth 0 char-values) #\p)

(equalv (nth 1 char-values) #\r)

(equalv (nth 2 char-values) #\i)

(equalv (nth 3 char-values) #\n)

(equalv (nth 4 char-values) #\t)

(equalv (v@ (token) length) 5)

(rest-chars-are-whitespace char-values 5))

;; ...

))))

Listing 3: Snippet from the “chars-to-token” constraint that verifies a print keyword.

A complete list of constraints at all levels of the CDO tree for Nibbles is available in Appendix E.

The constraints are described in English rather than LISP to avoid unnecessary details of Screamer.

Note that these constraints represent a small subset of Python, not the complete language!

18.5 Results and Discussion

Below we focus on three concrete example programs from the eyeCode experiment [46]. These

programs were most difficult for our human participants, resulting in the highest number of errors

(incorrect output predictions). We use Nibbles to model the errors observed in humans by

generating incorrect mental models for each program. Under these conditions, Nibbles represents

either a less experienced programmer or an experienced programmer with invalid assumptions.

We then show how, with the re-ordering of specific choice points or the strengthening of particular

constraints, these errors can be eliminated.
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18.5.1 counting - twospaces

The code for our first example is given in Listing 4. When asked what it would print, about half

our participants incorrectly assumed that the final print line would only execute once. Because

indentation is meaningful in Python, the last line must be part of the for loop (despite the

misleading text “Done counting”).

1 for i in [1, 2, 3, 4]:

2 print "The count is", i

3

4

5 print "Done counting"

Listing 4: Code from the counting - twospaces program in the eyeCode experiment.

If the two blank lines (lines 3 and 4) are removed, however, significantly fewer errors of this type

are made (Section 5.2.2). This suggests that our participants understood Python’s semantic

indentation, but may not have been gathering enough evidence before settling on an interpretation

of the code. One possible mechanism for this error is if vertical whitespace primes disjoint

grouping of lines – i.e., a participant is more likely to break code lines into different groups when

they are separated by enough whitespace. If a line’s indentation is not explicitly (visually)

determined, we hypothesize that it will be inferred from the grouping.

Consider the (abbreviated) “mental model” representation given by Nibbles in Listing 5 for

counting twospaces. At this point, Nibbles is focused on the first line (indicated with a [*]). We

can see that all three lines (L1, L2, L3) are contained in a single line group (LG1). Because Nibbles is

focused on the first line, some details of the second line are available: specifically, token sizes and

relative indentation. The > after PRINT-LINE-TYPE indicates that line 2 is indented relative to the

line above it. We assume this information is (visually) available to Nibbles because of the proximity

of lines 1 and 2. The relative indentation of line 3, however, is not visually available, and its value

(| - meaning same indent previous line) is inferred based on the assumption that it is part of line group

1. While this is the correct interpretation, it is not based any visual evidence.

Listing 6 shows the state of Nibbles’ mental model after lines 1 and 2 have been observed. The

details of line 3 are now available, and there is enough information to start predicting the
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LG1. FOR-LOOP-LINE-GROUP-TYPE:

L1. FOR-LOOP-LINE-TYPE | (indent:1) [*]:

[KEYWORD-TYPE:3] for

[NAME-WORD-TYPE:1] i

[KEYWORD-TYPE:2] in

...

[SYMBOL-WORD-TYPE:1] :

L2. PRINT-LINE-TYPE > (indent:2):

EXPR-LITERAL : PYTYPE-NUMBER

[KEYWORD-TYPE:5] PRINT

...

[NUMBER-WORD-TYPE:1] ?

L3. UNKNOWN-LINE-TYPE | (indent:2):

Listing 5: Correct mental model for counting - twospaces, focus on line 1.

program’s output. Based on this mental model, the correct output will be predicted. The line

grouping constraint line-group-indent is responsible for line 3’s relative indentation. If it is part

of line group 1, it cannot be indented or unindented relative to line 2 because the first line of the

group does not begin a new function or loop block. Nibbles assumes line 3 is part of line group 1,

therefore it is inline (|) with line 2.

If we include the assumption that at least 2 blank lines indicates a likely break in the current line group,

Nibbles will produce the same error observed in our human data. By re-ordering the Line Group

Role choice point for lines after a block of whitespace, Nibbles will be primed for solutions that

break the code into multiple line groups. Listing 7 shows the incorrect mental model produced by

this assumption. As before, lines 1 and 2 are observed and internalized. Line 3, however, is broken

out into a separate line group (LG2), and its relative indentation is unindented relative to line 2.

Again, the inferred indentation for line 3 is based on the (now incorrect) grouping assumption.

Were Nibbles to explicitly assert the indentation level for line 3, presumably based on extra visual

information, this solution would be discarded and the model in Listing 6 would prevail.

Predictions. Based on results from the eyeCode experiment, we know that moving the final

print up two lines will significantly reduce errors. We hypothesize that participants who produce

the grouping error will also incorrectly believe that the final line is unindented relative to the
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LG1. FOR-LOOP-LINE-GROUP-TYPE:

L1. FOR-LOOP-LINE-TYPE | (indent:1):

[KEYWORD-TYPE:3] for

[NAME-WORD-TYPE:1] i

[KEYWORD-TYPE:2] in

...

[SYMBOL-WORD-TYPE:1] :

L2. PRINT-LINE-TYPE > (indent:2):

EXPR-LITERAL : PYTYPE-STRING

[KEYWORD-TYPE:5] PRINT

...

[NAME-WORD-TYPE:1] i

L3. PRINT-LINE-TYPE | (indent:2) [*]:

EXPR-LITERAL : PYTYPE-STRING

[KEYWORD-TYPE:5] print

[SYMBOL-WORD-TYPE:1] "

[TEXT-WORD-TYPE:4] Done

[TEXT-WORD-TYPE:8] counting

[SYMBOL-WORD-TYPE:1] "

Listing 6: Correct mental model for counting - twospaces, focus on line 3.

second line. Additionally, we predict that calling attention to the relative indentation will reduce

error rates. For example, adding an end token after the final print statement or nesting the whole

program in another for loop may force participants to visually measure the indent level.

Open Questions. Our Nibbles model of the grouping error does not depend on the words “Done

counting” in the final line. We suspect that changing these words to something like “Home

mounting” will reduce errors slightly (perhaps almost entirely if the blank lines are also removed).

A straightforward way of incorporating lexical information into Nibbles is by having words

influence the re-ordering of choice points. In this specific instance, “Done counting” could play the

same role as whitespace by priming Nibbles to break the current line group. Errors from the

counting nospace program of the eyeCode experiment (no extraneous whitespace), however,

were significantly fewer than the twospaces program above. Therefore, some extension to Nibbles’

CDO will be required to incorporate realistic text priming.
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LG1. FOR-LOOP-LINE-GROUP-TYPE:

L1. FOR-LOOP-LINE-TYPE | (indent:1):

[KEYWORD-TYPE:3] for

[NAME-WORD-TYPE:1] i

[KEYWORD-TYPE:2] in

...

[SYMBOL-WORD-TYPE:1] :

L2. PRINT-LINE-TYPE > (indent:2):

EXPR-LITERAL : PYTYPE-STRING

[KEYWORD-TYPE:5] PRINT

...

[NAME-WORD-TYPE:1] i

LG2. GENERIC-LINE-GROUP-TYPE:

L3. PRINT-LINE-TYPE < (indent:1) [*]:

EXPR-LITERAL : PYTYPE-STRING

[KEYWORD-TYPE:5] print

[SYMBOL-WORD-TYPE:1] "

[TEXT-WORD-TYPE:4] Done

[TEXT-WORD-TYPE:8] counting

[SYMBOL-WORD-TYPE:1] "

Listing 7: Incorrect mental model for counting - twospaces, focus on line 3.

18.5.2 overload - plusmixed

Our next example is given in Listing 8. The overload plusmixed program performs two

summations and one string append at the end. Because Python overloads the + operator, it’s

possible mistakenly think the final print will output 8 instead of “53”. A handful of participants

made this error (approximately 11%), but we also saw evidence for a slower response time relative

to the multmixed version where the first two print statements used * instead of + (Section 5.2.6).

How would these two observations be accounted for in the Nibbles model?
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1 a = 4

2 b = 3

3 print a + b

4

5 c = 7

6 d = 2

7 print c + d

8

9 e = "5"

10 f = "3"

11 print e + f

Listing 8: Code from the overload - plusmixed program in the eyeCode experiment.

Modeling the slower response time with Nibbles is fairly straightforward if we assume that the

numeric sense of the + operator has been primed by the time the final print statement is

interpreted. Without additional constraints, and with the Operator Type choice point re-ordered to

have Sum first, Nibbles will produce the mental model in Listing 9. Given the assumption that +

means “sum”, Nibbles infers that e and f are both numbers.

L1. PRINT-LINE-TYPE | (indent:1):

EXPR-VV-PLUS : PYTYPE-NUMBER (PLUS-SUM)

[KEYWORD-TYPE:5] print

[NAME-WORD-TYPE:1] e (PYTYPE-NUMBER)

[SYMBOL-WORD-TYPE:1] +

[NAME-WORD-TYPE:1] f (PYTYPE-NUMBER)

Listing 9: Incorrect mental model for final line of overload - plusmixed

But after reading the previous two lines (e = "5" and f = "3"), the fact that e and f are strings

should be known. How can Nibbles represent this knowledge and find the correct mental model,

but still be slower than if e and f were numbers? Adding the following constraint to the top level

(Program) will produce the desired behavior:

If a Name token has text “e” or “f”, then its type must be String

Now, Nibbles will generate the correct mental model shown in Listing 10. Although the correct

solution is the first one found, the search process will take more time. By constraining e and f to
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strings at the Program level, as opposed to the Line Group, Line, or Token level, Nibbles will still

generate the previous (incorrect) mental model, but it will be ultimately discarded. Were the constraint to

be pushed further down into the CDO tree, Nibbles would produce the correct solution in fewer

steps.

L1. PRINT-LINE-TYPE | (indent:1):

EXPR-VV-PLUS : PYTYPE-STRING (PLUS-APPEND)

[KEYWORD-TYPE:5] print

[NAME-WORD-TYPE:1] e (PYTYPE-STRING)

[SYMBOL-WORD-TYPE:1] +

[NAME-WORD-TYPE:1] f (PYTYPE-STRING)

Listing 10: Correct mental model for final line of overload - plusmixed

With the type constraint on e and f , Nibbles will always produce the correct mental model. How

can we account for the observed human error in which the predicted output is 8? Clearly, the 5 and

3 values must have been read, but they were either mistakenly interpreted as numbers or those

participants believed that Python’s + operator would convert the strings to numbers. The latter is

actually the correct behavior in some languages, such as PHP [94], in which strings are sometimes

automatically coerced into integers. Modeling multi-language knowledge is beyond the scope of

this work, but it is possible to model the misinterpretation of a string as a number.

The chars-to-token and rhs-expression-pytype constraints (Appendix E) work together to

distinguish 5 (a number) from "5" (a string). Nibbles sees the latter as three separated tokens: ", 5,

and ". At the Token level, Nibbles will interpret the 5 in "5" as both a Number and a Text token.

At the Line level, the following condition from rhs-expression-pytype will discard the numeric

interpretation of "5":

If RHS is a Number, it has exactly 1 Number token

Because of the two " Symbol tokens, this constraint will ensure that "5" is not a number. We could

model the misinterpretation by withholding the " Symbols at first, perhaps based on some notion

that digits are more salient than quotes (and therefore visually processed first). Another, simpler

option is to slightly tweak the constraint as follows:
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If RHS is a Number, it has at least 1 Number token

With this updated constraint, Nibbles is now capable of misinterpreting "5" as a number depending

on the ordering of other choice points. If the Number choice is considered first for Token Type, then

rhs-expression-pytype will happily declare that the expression " (Symbol), 5 (Number), "

(Symbol) is numeric – and therefore, e and f are numbers. Additional experiments with

programmers are needed to disambiguate the cause(s) of the error, and guide the adjustment of

Nibbles’ constraints in order to more closely match human behavior.

Predictions. Based on the eyeCode experiment results and our Nibbles model, we would expect

fewer errors to be made on overload plusmixed when the “string append” sense of the + operator

has been sufficiently primed. We did not observe a statistical difference between the plusmixed

and strings versions of the program in this regard, but the small program lengths and

unconstrained reading order make it difficult to pinpoint priming effects. A more controlled,

focused experiment would provide more evidence one way or the other. Additionally, we should

expect a reduction in errors (or a boost in speed) when either e and f have no digits (e.g., "five"

and "three" instead of "5" and "3") or have been made visually distinct with syntax highlighting.

Open Questions. How can Nibbles be used to inform a discussion on the cognitive complexity of

operator overloading? The differences between a Nibbles CDO with and without operator

ambiguity can be quantified in a number of potentially useful ways: the sizes of their solution

spaces, the number and complexity of their constraints, and by the kinds of invalid solutions that

can be generated locally. Without a token for designating a variable’s type, such as string e =

"5", type inference in the programmer’s head hinges entirely on the two quotes. What is the

trade-off in adding additional syntax to the language to designate variable types, perhaps via

gradual typing [100]? The parsing and compilation costs are not necessarily the same as the

cognitive costs, and future work with Nibbles could help predict these costs by modeling the kinds

of errors humans make. While this cannot replace experiments with real programmers, it is more

objective (and falsifiable) than opinion in the absence of human data.
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18.5.3 scope - diffname

The code for our final example is given in Listing 11. Along with counting twospaces and its

samename version, this program was responsible for many of the errors produced in the eyeCode

experiment (Section 5.2.9). The program outputs 4, rather than the expected value of 22, due to the

pass-by-value semantics of Python: given that added = 4, the expression add 1(added) is

equivalent to add 1(4). Many participants, however, were convinced that the add 1 and twice

functions must do something, and therefore had to modify the contents of added (some participants

even questioned Python’s pass-by-value semantics!). Soloway identified the maxim “Don’t include

code that won’t be used” as an implicit rule of discourse for programming [89], and its violation

appears to be very potent.

1 def add_1(num):

2 num = num + 1

3

4 def twice(num):

5 num = num * 2

6

7 added = 4

8 add_1(added)

9 twice(added)

10 add_1(added)

11 twice(added)

12 print added

Listing 11: Code from the scope - diffname program in the eyeCode experiment.

Nibbles can model the expectation that code should “do something” by extending the CDO and

embellishing the existing constraints. For guidance, we turn to Mayer’s notion of a

transaction [58]. Rist describes a Mayer transaction as follows:

“...The creation of just a single line of a code requires a great deal of reasoning and planning.

Mayer (1987) described the conceptual structure underlying a line of BASIC code and found

that the smallest piece of knowledge used in program understanding is a transaction. A

transaction can be described using three categories: what operation takes place (action), where

it takes place (location) and what object is acted upon (object).” [73]
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For Nibbles, we will consider a transaction to have actions, inputs, and outputs. This is slightly

more general than Mayer’s notion, and maps more readily to the lines of a high-level language like

Python. For example, the statement x = y + 1 has two actions (+, =), two inputs (y, 1), and one

output (x). We suggest that a line of code can be said to “do something” if it contains a complete

transaction – that is, with at least one token for an action, input, and output. With this definition, x

= 5 is a complete transaction, while x == 5 is not. A function call like f(x) could be a complete

transaction if we consider f to be the action, and x to be both the input and the output. If x is a Python

list, for instance, it is reasonable for f to modify x by appending/delete items.

Figure 100: Extended portion of Nibbles CDO with Mayer-like transactions.

Figure 100 contains just the extended portion of Nibbles CDO (see Figure 99 for the rest). At the

Token level, we add a Transaction Role sub-parts with an Active/Inactive choice point for each of

the transaction roles described above. A Token, therefore, can be any combination of Input, Output,

and Action. Output tokens have an additional choice point, called Output Type, which

differentiates between Assign-ing a Name some new value and Modify-ing the value associated

with a Name. A handful of constraints combine to assign appropriate transaction roles to our

Tokens:
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A Symbol is an Action if and only if it is + or =

A Number or Text token is always an Input

At the Line level, the Transaction Status choice point simply marks whether the line contains a

complete or incomplete transaction. The following additional constraints enforce our notion of a

complete transaction, and help to assign transaction roles:

A transaction is complete if and only if the line has 1+ Action, 1+ Input, and 1+ Output

Any token in a right-hand side expression cannot be an Output

The 1st token of an Assignment Line cannot be an Input or Action

The 1st token of a Function Call Line cannot be an Input or Output

Only the 1st token of an Assignment Line can have Output Type Assign

Example of a Valid Transaction. The Nibbles mental model in Listing 12 is derived from the

assignment statement x = y + 1 with the constraints above applied. At the Line level, a complete

transaction is marked with a TX. For each Token, the transaction role(s) are indicated with an A

(action), O (output), and/or I (input) on the right side of each printed line. The Output Type is

given as either O= (assign) or O! (modify). In this example (a complete transaction), x is marked as

the output, y and 1 as inputs, and both + and = as actions.

LG1. GENERIC-LINE-GROUP-TYPE:

L1. ASSIGNMENT-LINE-TYPE | TX (indent:1):

x : PYTYPE-NUMBER

EXPR-VL-PLUS : PYTYPE-NUMBER

[NAME-WORD-TYPE:1] x (PYTYPE-NUMBER) O=

[SYMBOL-WORD-TYPE:1] = A

[NAME-WORD-TYPE:1] y (PYTYPE-NUMBER) I

[SYMBOL-WORD-TYPE:1] + A

[NUMBER-WORD-TYPE:1] 1 I

Listing 12: Nibbles mental model for the statement x = y + 1 with transactions.

Adding Targets. We now turn back to the Python code example in Listing 11. Focusing on lines 7

and 8, the generated Nibbles mental model is given in Listing 13. Both lines are considered

complete transactions (marked with a TX). However, the added variable in line 8 is inferred as both
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the input and output! This makes sense, given that a Complete Transaction Status will be tried before

an Incomplete at the Line level (mirroring the assumption that programmers expect a complete

transaction). With no additional constraints, added is assumed to be modified during the function

call despite the fact that it points to a constant (4).

LG1. GENERIC-LINE-GROUP-TYPE:

L7. ASSIGNMENT-LINE-TYPE | TX (indent:1):

added : PYTYPE-NUMBER

EXPR-LITERAL : PYTYPE-NUMBER

[NAME-WORD-TYPE:1] added (PYTYPE-NUMBER) O=

[SYMBOL-WORD-TYPE:1] = A

[NUMBER-WORD-TYPE:1] 4 I

L8. FUN-CALL-LINE-TYPE | TX (indent:1):

[NAME-WORD-TYPE:5] add_1 A

[SYMBOL-WORD-TYPE:1] (

[NAME-WORD-TYPE:5] added (PYTYPE-NUMBER) I O!

[SYMBOL-WORD-TYPE:1] )

Listing 13: Nibbles mental model for 2 lines from scope diffname.

We believe this is one source of human error: incorrectly assuming that the argument given to

add 1 can be modified due to a strong preference for lines that form complete transactions. Nibbles

makes this error because it does not carry forward information about the nature of object targeted

by the variable added. If we simply replace added with its value (4), the error disappears because a

Number token cannot be an Output (Listing 14). Although we have not confirmed this with

experiments, we would not expect any competent Python programmer to conclude that add 1(4)

will modify its argument.

LG1. GENERIC-LINE-GROUP-TYPE:

L1. FUN-CALL-LINE-TYPE | (indent:1):

[NAME-WORD-TYPE:5] add_1 A

[SYMBOL-WORD-TYPE:1] (

[NUMBER-WORD-TYPE:4] 4 I

[SYMBOL-WORD-TYPE:1] )

Listing 14: Nibbles mental model with the function call’s argument name replaced by its value.

By extending Nibbles’ CDO once again, we can prevent an incorrect interpretation of line 8, and
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attempt to model those participants who did not make this particular error. Figure 101 shows the

extended portion of the CDO (relative to Figure 99).

Figure 101: Extended portion of Nibbles CDO with Name targets.

We begin by extending Name tokens with the notion of a target type. Targets may be a Constant or

a Mutable object, like a list or dictionary. Names that target Constants, such as numbers and strings,

cannot modify their targets, and therefore should not have an Output Type of Modify. With enough

restrictions on its Output Type, a Name token may be dropped from consideration as a transaction

output. The assignment of a Name Target in Nibbles is done at the Line level via constraints on the

Assignment line type. Given a particular right-hand side (RHS) expression, the left-hand side

(LHS) variable’s Target type can be inferred. The addition of two constraints, one at the Line level

and one at the Token level, will help Nibbles avoid the input/output argument error on line 8:

If an Assignment Line RHS is a Number or Text string, the LHS target type is a Constant

A Name that targets a Constant cannot have a Modify Output Type

When interpreting lines 7 and 8 with the extensions above, Nibbles will no longer mistakenly

assume that added could be modified by add 1 (Listing 15). In fact, the added argument token is no

longer considered a transaction Output. Note that this requires propagating the Target information

for a Name from one line to the next, much like type information was propagated in Section 18.5.2.

For brevity, we do not list these extra constraints.
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LG1. GENERIC-LINE-GROUP-TYPE:

L7. ASSIGNMENT-LINE-TYPE | TX (indent:1):

added : PYTYPE-NUMBER

EXPR-LITERAL : PYTYPE-NUMBER

[NAME-WORD-TYPE:1] added (PYTYPE-NUMBER, TARGET-CONSTANT) O=

[SYMBOL-WORD-TYPE:1] = A

[NUMBER-WORD-TYPE:1] 4 I

L8. FUN-CALL-LINE-TYPE | (indent:1):

[NAME-WORD-TYPE:5] add_1 A

[SYMBOL-WORD-TYPE:1] (

[NAME-WORD-TYPE:5] added (PYTYPE-NUMBER, TARGET-CONSTANT) I

[SYMBOL-WORD-TYPE:1] )

Listing 15: Nibbles mental model for 2 lines from scope diffname with CDO extensions.

Besides the mistaken interpretation of line 8, there may be other sources of error in scope

diffname. Our simple extensions to Nibbles model the notion of code that “does something” at the

level of a single line. This concept could be applied to an entire Line Group, or even a Program. A

Line Group, for example, could be said to do something if it contains a line with at least one

complete transaction. Additionally, human programmers likely have a much more nuanced model

of transactions. Research on the roles of variables in code has uncovered a common set of parts

that variables play [74], such as a Fixed Value or Most Recent Holder. A more comprehensive

model, perhaps including these variable roles, would boost Nibbles’ ability to model human errors.

Predictions. Based on the Nibbles model alone, we might predict that more experienced Python

programmers (i.e., those with an extended mental model) would be less likely to make errors on

scope diffname. This was observed in the eyeCode experiment, though the effect was not large. If

our model is correct, we should also expect that some programmers will assume that added is

modified by add 1 or twice without seeing the definitions of either function. The Nibbles model also

predicts that changing function names should have no effect – e.g., foo(added) instead of

add 1(added). We doubt this would hold in a real experiment, and is another opportunity for

lexical information to be incorporated (Section 18.5.1).

Open Questions. Do transactions really capture how human programmers determine whether or

not a piece of code “does something”? And do programmers use the same principles at and above

the line level? Saying that a function does something useful may depend on more factors than
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whether or not its body contains a complete transaction. We expect that programmers have a sense

of whether or not a transaction is externally visible outside of a function: for example, a print or

return statement. An entire experiment with variants of scope diffname could be constructed to

test this hypothesis, having some variants perform externally visible actions in the bodies of add 1

and twice. With at least one of these actions present, would most programmers still assume that

added is modified by the function calls?

18.5.4 Model Capabilities

Nibbles has a number of interesting capabilities, both as a model of program comprehension and

as a cognitive model in general. Most importantly, the model can make errors when interpreting a

program’s code. Unlike Mr. Bits, whose goal stack is pre-populated by the Python debugger,

Nibbles may interpret a program differently depending on which choice points are “primed” in the

moment. Because we assume the first solution given by the constraint solver is the “best” one,

learning in the Nibbles model is entirely due to the re-ordering of choice points, which determine

how the CDO space is explored. The initial ordering represents pre-existing knowledge of Python –

e.g., which types of expressions are more likely than others. As the program is read, line-by-line,

Nibbles adjusts the order of choice points to match what it observes. While this learning rule is

simple, however, we do not currently have experimental evidence to support its use (see

Section 18.5.5 for more threats to validity).

Although the CDO tree for Nibbles (Figure 99) is relatively simple compared to the programs

experts comprehend on a daily basis, the space of possible programs it represents is quite large.

Nibbles cannot practically search the entire space for every token or line that it encounters. A form

of attention is necessary to reduce the size of the search space, but also adds to the model’s

plausibility; humans probably do not infer the 47th token of a program after reading the first five.

Nibbles’ attention is controlled it two ways: first, by reducing the detail level of tokens/lines that

are far away from the sensor. Second, by accumulating assertions as the program is read, and

fixing the values of choice points. The specifics of how details are degraded with distance from the

sensor should be refined with additional experiments. Our design decisions are based loosely on

the Mr. Chips model of reading [57], but the possibility exists for a much richer degradation model.
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For example, tokens highlighted with a specific color could be considered keywords, regardless of

their distance from the sensor. Additionally, classes of characters may be distinguishable just

outside the sensor, such as alphabetic, numeric, and punctuation. These additional hints would

speed up Nibbles’ search and, combined with a more realistic model of character recognition, help

language designers quantify the trade-offs inherent in choosing a language’s tokens.

Finally, Nibbles is able to infer (or abduce) unobserved code at multiple levels of abstraction:

characters, tokens, and lines. At its heart, Nibbles uses the Screamer constraint solver to enumerate

possible constraint-complaint solutions. Unobserved code is simply unconstrained by anything

other than Nibbles’ knowledge of Python and its expectations of complete transactions, etc.

(Section 18.5.3). Because of this, Nibbles can both recognize and generate programs. While it is

possible to parse and generate programs purely using Python’s grammar, Nibbles will only

recognize/generate schematic programs – e.g., those that satisfy all of its constraints. These

constraints need not always be about Python, and may exclude or discount programs that are

well-formed but unconventional (e.g., scope diffname).

18.5.5 Limitations and Threats to Validity

Although Nibbles is a step forward for human cognitive models of program comprehension, it has

many limitations. Like Mr. Bits, Nibbles is unable to handle larger, “real world” programs with

user-defined classes, nested/recursive function calls, and code spread across multiple files. A great

deal of future work is needed to take Nibbles from toy programs to those encountered by

programmers every day. For these kinds of programs, Nibbles will need to be much more

autonomous; behaving as an agent. Knowledge from previous code lines (and previous programs)

will need to be retained in a declarative memory, and recalled as the program is read. Goals will

have to be generated, nested, and pursued, such as evaluating a function call on the right-hand

side of an assignment. And accumulated knowledge may need to be discarded or re-evaluated

when inconsistencies are noted. The incorrectly inferred type of a variable, for example, could

cause Nibbles to return no solutions for downstream code.

A major assumption underlying the Nibbles model is that the first solution returned is the best

interpretation. This allows us to model priming and expectations simply by reordering choice
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points. Of course, other methods are available for obtaining the “best” solution, such as ranking all

solutions according to a set of utility functions (Section 16.3.5). Enumerating and ranking all of

Nibbles’ solutions would require more computing resources, and some calculus for combining

utility values. It may also be the case that human programmers entertain multiple or partial solutions,

perhaps blending them to produce a “final” interpretation. For now, we leave these questions to

future work with the hope that research into mental models [50] in general will inform future

modeling efforts.

Finally, Nibbles’ CDO structure and constraints are engineered to produce a fit with human

behavior. Nibbles does not learn except through the accumulation of assertions about the current

token, line, etc. from observation. While the learning of a domain’s structure and constraints is a

fascinating research area, Nibbles is “hand-built” from experimental observations and expert

introspection. With very few program comprehension experiments to draw from [29], we must

make some assumptions. Unlike the many qualitative cognitive models available (Section 15.2),

however, Nibbles can be executed and empirically tested.
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19 Part 3: Conclusion

In this part, we described and evaluated two quantitative cognitive models of program

comprehension: Mr. Bits and Nibbles. Mr. Bits sits at a lower level of abstraction, producing eye

movements (fixations) and keystroke timings (responses). The time Mr. Bits spends looking at each

line of code correlates strongly with human data from the eyeCode experiment (Section 17.5.1),

and the time taken to finish evaluating each program is roughly average when compared to real

programmers (Section 17.5.2). With ACT-R’s sub-symbolic mode enabled, and without the ability

to perfectly remember long lists of numbers, Mr. Bits successfully instantiates most aspects of the

cognitive complexity metric [16]. Among its many limitations (Section 17.5.4), however, is the

inability to parse raw text into a “mental” model and generate its own goals. Mr. Bits shifts visual

attention around the screen and remembers/recalls variable values, but it relies entirely on

Python’s built-in debugger to tell it what to do next.

In the future, we hope to use Nibbles as the bridge between raw text and Mr. Bits. Nibbles can

parse raw text into an internal representation, which may or may not contain errors. Unlike Mr.

Bits, Nibbles transforms raw text into a program model, which contains the necessary information

for goal generation (e.g., which lines should be evaluated in the body of a for loop). Using a

constraint solver, Nibbles takes observed characters in the program text and generates likely

interpretations of the current token, line, line group, and program. Besides grammatical constraints

from Python, Nibbles models human expectations or rules of discourse [89]. Schema-compliant code

is preferred, such as lines that form complete transactions (Section 18.5.3), though Nibbles can still

recognize non-schematic code. Together, Mr. Bits and Nibbles may come close to realizing the

majority of Von Mayrhauser’s Integrated Metamodel (Figures 79 and 102).

Research Goals. Our main goal for this research was to develop a realizable (executable) theory of

program comprehension that (at least) could explain the results of the eyeCode experiment. Mr.

Bits and Nibbles have come a long way towards this goal, with Nibbles especially providing

specific, testable explanations for the observed human errors. Additional experiments are

necessary to validate the many design decisions that were made to match human behavior. Mr.

Bits’ ACT-R parameters, for example, were hand-picked to ensure realistic trial times (though these

parameters are within reasonable human ranges). Nibbles’ program model is largely based on the
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Figure 102: Low-level view of Von Mayrhauser’s Integrated Metamodel (re-created from Figure 6 in [101])

textual structure of code, as described by Pennington [70], but many of the non-textual aspects,

such as (semantic) line grouping, type inference, and transactions are less grounded in empirical

research. Research on natural language text understanding may provide more guidance [54], but

only insofar as a program’s code is like a natural text document. In other words, programmers may

construct a situation model of a program that bears little resemblance to a person’s mental

representation of a story or technical document [101].

Model Contributions. How could our models help inform programming language design?

Programming languages are rarely designed based on empirical research (Quorum being a notable

exception [91]). Instead, they are “evolved” in response to new application areas, requests from

their respective user communities, or the emergence of new features in other languages. Predicting

how programmers of varying experience levels will be impacted by a change to the language is

very difficult without proper, controlled human experiments. With a realistic cognitive model,

however, it may be possible to predict the impact of a given language change, and rank order

different design alternatives. While not a replacement for human experiments, a more
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comprehensive version of Nibbles could predict sources of ambiguity or error when performing

specific tasks on code written in the modified language. For example, overloading a new operator

may cause a Nibbles “test case” to fail because it no longer has enough information available

locally to infer a variable’s type. Such test cases would call attention to situations where the

reasoning methods of the programmer and compiler sharply diverge.

19.1 Future Work

There are many opportunities to extend and improve Mr. Bits and Nibbles, both individually and

as a combined model. We briefly discuss potential avenues for future research below (more details

are available in Sections 17.5 and 18.5).

19.1.1 Improving Mr. Bits

Mr. Bits was designed to operationalize the cognitive complexity metric [16] in order to rank

versions of the same program by their cognitive complexity – i.e., how difficult they would be to

understand. We compared Mr. Bits’ trial time (MBTT), the time it takes to evaluate and predict the

output of a program, to several commonly used source code metrics. Our results were promising,

but a thorough comparison of MBTT and more modern metrics, such as Douce’s spatial

complexity [32] or Buse’s readability [11], would help characterize and (hopefully) distinguish this

new metric. In the short term, Mr. Bits will also need to be extended to handle user-defined classes,

which itself will requiring maintaining type information about variables. Therefore, it may be

beneficial to consider any future versions of Mr. Bits as a companion to Nibbles, which does just

that.

19.1.2 Nibbles 2.0

The next version of Nibbles will need to not only account for constraints above the line group level,

but also incorporate knowledge beyond the scope of Python and programming. Function and

variable names, for instance, are not opaque tokens – humans choose specific patterns and parts of

speech to convey concepts in their code [8]. Constraints at the module and multi-module level

could take Nibbles beyond the eyeCode output prediction task, and into more realistic areas like
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debugging and code review. Nibbles’ simple decision procedure, pick the first solution, may not be

sufficient for larger programs where multiple hypotheses need to be tested by gathering additional

evidence. Having Nibbles base decisions off of the entire solution space would solve the problem,

but will require significant computing resources (or a faster constraint solver!).

19.1.3 Combining Mr. Bits and Nibbles

A combination of the Mr. Bits and Nibbles model would form an end-to-end model of the eyeCode

experiment task, transforming raw text into fixations and response keystrokes. A first step towards

this goal would be to modify the early stages of Mr. Bits, and have it generate goals based on

Nibbles’ mental models. The reading behavior of Mr. Bits could be much improved by only

fixating tokens that Nibbles could not infer based on Python’s grammar. In the end, the joint Mr.

Bits + Nibbles model would need to generate goals on the fly as text is read in order to

disambiguate unobserved code and trace the necessary dependencies for evaluation.
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20 Main Conclusion

What makes some code harder to understand? In this dissertation, we quantified the cognitive

complexity of a program via two cognitive models of program understanding: Mr. Bits and Nibbles.

These models were informed by data collected from 162 programmers in a large (mostly) online

experiment. This experiment, called eyeCode, asked programmers to read 10 short Python

programs and predict their printed output. We used the errors our participants made to inform

Nibbles’ “mental model” generation process, and were able to provide explanations for these errors.

For example, the most common error was made in a version of the counting program

(Section 5.2.2) involving the mistaken exclusion of a line from the body of a loop. Nibbles is able to

produce this error when indentation details for the lines are not explicitly observed, but will

correctly group lines in the loop body if local indentation information is available. While the

structure of Nibbles’ domain and its constraints were engineered specifically to model these errors,

the formalism upon which Nibbles is based can be generalized to more complex situations or even

other programming languages.

A subset of our 162 participants (29) performed the eyeCode experiment in front of an eye-tracker,

allowing us to observe which lines of code were being fixated during the course of the experiment.

The Mr. Bits model, built on the ACT-R cognitive architecture, predicts this kind of eye movement

data. When comparing Mr. Bits and the eyeCode data, we found that Mr. Bits performed best

when ACT-R’s sub-symbolic mode was enabled and when the model was not allowed to

remember lists of numbers after a single viewing. In isolation, however, Mr. Bits did not

outperform a simple model (based soley on line length) for predicting relative time spent fixating

each line of code. While the line length model is certainly more parsimonious, it cannot also be

used to predict keystroke timings, line transition frequencies, and the overall time taken for each

trial. Additionally, the Mr. Bits model (like the Mr. Chips model of text reading) can explain why its

predictions are what they are. The positive correlation between line length and fixation time, for

example, is likely an artifact of our simple Python programs. The longest lines in these short,

simple programs contained lists of numbers which were crucial for the output prediction task.

Were these lines to contain strings with predictable prose or highly schematic boilerplate code, we

would expect the correlation to diminish significantly.
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Besides the two cognitive models, there were two additional contributions. First, we developed a

set of performance metrics for assessing and ranking the eyeCode participants. These metrics

quantify the correctness of a trial and categorize both keystrokes and periods of time within a trial.

Similarly, we collected a number of eye movement metrics and visualizations for comparing and

contrasting our eye-tracking trials. An open source Python data analysis library (also called

eyeCode) was developed, and serves as an additional contribution. The most interesting

visualization technique made use of rolling time windows, and allowed us to identify points where

participants were likely performing mental calculations (Section 12.2.3). Applying these metrics

and visualizations to other eye-tracking data sets would be an interesting avenue for future work.

Overall, it is clear from the experiments and models provided here that: (1) a cognitive modeling

approach to program understanding is necessary for a more complete explanation of observed

programmer behaviors, and (2) a great deal of work remains to be done in both the modeling of

program understanding and quantitative cognitive modeling in general. Even with decades of

research, for example, the ACT-R cognitive architecture quickly becomes unwieldy when modeling

phenomena more complex than simple forced-choice tasks or paired associations. New formalisms,

like Cognitive Domain Ontologies, facilitate a higher-level of abstraction, but lack strong

experimental evidence. Program understanding provides a challenging cognitive modeling

opportunity, especially when the desired model produces quantitative predictions. We hope that

this field will help to expand the frontiers of Cognitive Science while formalizing one of the more

difficult cognitive tasks that humans perform.
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A Appendix - Programs and Output

A.1 between

A.1.1 between - functions

1 def between(numbers, low, high):

2 winners = []

3 for num in numbers:

4 if (low < num) and (num < high):

5 winners.append(num)

6 return winners

7

8 def common(list1, list2):

9 winners = []

10 for item1 in list1:

11 if item1 in list2:

12 winners.append(item1)

13 return winners

14

15 x = [2, 8, 7, 9, -5, 0, 2]

16 x_btwn = between(x, 2, 10)

17 print x_btwn

18

19 y = [1, -3, 10, 0, 8, 9, 1]

20 y_btwn = between(y, -2, 9)

21 print y_btwn

22

23 xy_common = common(x, y)

24 print xy_common

1 [8, 7, 9]

2 [1, 0, 8, 1]

3 [8, 9, 0]
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A.1.2 between - inline

1 x = [2, 8, 7, 9, -5, 0, 2]

2 x_between = []

3 for x_i in x:

4 if (2 < x_i) and (x_i < 10):

5 x_between.append(x_i)

6 print x_between

7

8 y = [1, -3, 10, 0, 8, 9, 1]

9 y_between = []

10 for y_i in y:

11 if (-2 < y_i) and (y_i < 9):

12 y_between.append(y_i)

13 print y_between

14

15 xy_common = []

16 for x_i in x:

17 if x_i in y:

18 xy_common.append(x_i)

19 print xy_common

1 [8, 7, 9]

2 [1, 0, 8, 1]

3 [8, 9, 0]
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A.2 counting

A.2.1 counting - nospace

1 for i in [1, 2, 3, 4]:

2 print "The count is", i

3 print "Done counting"

1 The count is 1

2 Done counting

3 The count is 2

4 Done counting

5 The count is 3

6 Done counting

7 The count is 4

8 Done counting

A.2.2 counting - twospaces

1 for i in [1, 2, 3, 4]:

2 print "The count is", i

3

4

5 print "Done counting"

1 The count is 1

2 Done counting

3 The count is 2

4 Done counting

5 The count is 3

6 Done counting

7 The count is 4

8 Done counting

A.3 funcall

A.3.1 funcall - nospace

1 def f(x):

2 return x + 4

3

4 print f(1)*f(0)*f(-1)

1 60
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A.3.2 funcall - space

1 def f(x):

2 return x + 4

3

4 print f(1) * f(0) * f(-1)

1 60

A.3.3 funcall - vars

1 def f(x):

2 return x + 4

3

4 x = f(1)

5 y = f(0)

6 z = f(-1)

7 print x * y * z

1 60

A.4 initvar

A.4.1 initvar - bothbad

1 a = 0

2 for i in [1, 2, 3, 4]:

3 a = a * i

4 print a

5

6 b = 1

7 for i in [1, 2, 3, 4]:

8 b = b + i

9 print b

1 0

2 11
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A.4.2 initvar - good

1 a = 1

2 for i in [1, 2, 3, 4]:

3 a = a * i

4 print a

5

6 b = 0

7 for i in [1, 2, 3, 4]:

8 b = b + i

9 print b

1 24

2 10

A.4.3 initvar - onebad

1 a = 1

2 for i in [1, 2, 3, 4]:

3 a = a * i

4 print a

5

6 b = 1

7 for i in [1, 2, 3, 4]:

8 b = b + i

9 print b

1 24

2 11
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A.5 order

A.5.1 order - inorder

1 def f(x):

2 return x + 4

3

4 def g(x):

5 return x * 2

6

7 def h(x):

8 return f(x) + g(x)

9

10 x = 1

11 a = f(x)

12 b = g(x)

13 c = h(x)

14 print a, b, c

1 5 2 7
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A.5.2 order - shuffled

1 def h(x):

2 return f(x) + g(x)

3

4 def f(x):

5 return x + 4

6

7 def g(x):

8 return x * 2

9

10 x = 1

11 a = f(x)

12 b = g(x)

13 c = h(x)

14 print a, b, c

1 5 2 7

A.6 overload

A.6.1 overload - multmixed

1 a = 4

2 b = 3

3 print a * b

4

5 c = 7

6 d = 2

7 print c * d

8

9 e = "5"

10 f = "3"

11 print e + f

1 12

2 14

3 53
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A.6.2 overload - plusmixed

1 a = 4

2 b = 3

3 print a + b

4

5 c = 7

6 d = 2

7 print c + d

8

9 e = "5"

10 f = "3"

11 print e + f

1 7

2 9

3 53

A.6.3 overload - strings

1 a = "hi"

2 b = "bye"

3 print a + b

4

5 c = "street"

6 d = "penny"

7 print c + d

8

9 e = "5"

10 f = "3"

11 print e + f

1 hibye

2 streetpenny

3 53
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A.7 partition

A.7.1 partition - balanced

1 for i in [1, 2, 3, 4, 5]:

2 if (i < 3):

3 print i, "low"

4 if (i > 3):

5 print i, "high"

1 1 low

2 2 low

3 4 high

4 5 high

A.7.2 partition - unbalanced

1 for i in [1, 2, 3, 4]:

2 if (i < 3):

3 print i, "low"

4 if (i > 3):

5 print i, "high"

1 1 low

2 2 low

3 4 high

A.7.3 partition - unbalanced pivot

1 pivot = 3

2 for i in [1, 2, 3, 4]:

3 if (i < pivot):

4 print i, "low"

5 if (i > pivot):

6 print i, "high"

1 1 low

2 2 low

3 4 high
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A.8 rectangle

A.8.1 rectangle - basic

1 def area(x1, y1, x2, y2):

2 width = x2 - x1

3 height = y2 - y1

4 return width * height

5

6 r1_x1 = 0

7 r1_y1 = 0

8 r1_x2 = 10

9 r1_y2 = 10

10 r1_area = area(r1_x1, r1_y1, r1_x2, r1_y2)

11 print r1_area

12

13 r2_x1 = 5

14 r2_y1 = 5

15 r2_x2 = 10

16 r2_y2 = 10

17 r2_area = area(r2_x1, r2_y1, r2_x2, r2_y2)

18 print r2_area

1 100

2 25
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A.8.2 rectangle - class

1 class Rectangle:

2 def __init__(self, x1, y1, x2, y2):

3 self.x1 = x1

4 self.y1 = y1

5 self.x2 = x2

6 self.y2 = y2

7

8 def width(self):

9 return self.x2 - self.x1

10

11 def height(self):

12 return self.y2 - self.y1

13

14 def area(self):

15 return self.width() * self.height()

16

17 rect1 = Rectangle(0, 0, 10, 10)

18 print rect1.area()

19

20 rect2 = Rectangle(5, 5, 10, 10)

21 print rect2.area()

1 100

2 25
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A.8.3 rectangle - tuples

1 def area(xy_1, xy_2):

2 width = xy_2[0] - xy_1[0]

3 height = xy_2[1] - xy_1[1]

4 return width * height

5

6 r1_xy_1 = (0, 0)

7 r1_xy_2 = (10, 10)

8 r1_area = area(r1_xy_1, r1_xy_2)

9 print r1_area

10

11 r2_xy_1 = (5, 5)

12 r2_xy_2 = (10, 10)

13 r2_area = area(r2_xy_1, r2_xy_2)

14 print r2_area

1 100

2 25
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A.9 scope

A.9.1 scope - diffname

1 def add_1(num):

2 num = num + 1

3

4 def twice(num):

5 num = num * 2

6

7 added = 4

8 add_1(added)

9 twice(added)

10 add_1(added)

11 twice(added)

12 print added

1 4

A.9.2 scope - samename

1 def add_1(added):

2 added = added + 1

3

4 def twice(added):

5 added = added * 2

6

7 added = 4

8 add_1(added)

9 twice(added)

10 add_1(added)

11 twice(added)

12 print added

1 4
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A.10 whitespace

A.10.1 whitespace - linedup

1 intercept = 1

2 slope = 5

3

4 x_base = 0

5 x_other = x_base + 1

6 x_end = x_base + x_other + 1

7

8 y_base = slope * x_base + intercept

9 y_other = slope * x_other + intercept

10 y_end = slope * x_end + intercept

11

12 print x_base, y_base

13 print x_other, y_other

14 print x_end, y_end

1 0 1

2 1 6

3 2 11
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A.10.2 whitespace - zigzag

1 intercept = 1

2 slope = 5

3

4 x_base = 0

5 x_other = x_base + 1

6 x_end = x_base + x_other + 1

7

8 y_base = slope * x_base + intercept

9 y_other = slope * x_other + intercept

10 y_end = slope * x_end + intercept

11

12 print x_base, y_base

13 print x_other, y_other

14 print x_end, y_end

1 0 1

2 1 6

3 2 11

B Appendix - Program Metrics
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Base Version Code Ch Code Ln CC HE HV Ouput Ch Output Ln

between functions 496 24 7 94192.1 830.2 33 3

between inline 365 19 7 45596.3 660.8 33 3

counting nospace 77 3 2 738.4 82.0 116 8

counting twospaces 81 5 2 738.4 82.0 116 8

funcall nospace 50 4 2 937.7 109.4 3 1

funcall space 54 4 2 937.7 109.4 3 1

funcall vars 72 7 2 1735.7 154.3 3 1

initvar bothbad 103 9 3 3212.5 212.4 5 2

initvar good 103 9 3 3212.5 212.4 6 2

initvar onebad 103 9 3 2866.8 208.5 6 2

order inorder 137 14 4 8372.3 303.1 6 1

order shuffled 137 14 4 8372.3 303.1 6 1

overload multmixed 78 11 1 2340.0 120.0 9 3

overload plusmixed 78 11 1 3428.3 117.2 7 3

overload strings 98 11 1 3428.3 117.2 21 3

partition balanced 105 5 4 2896.0 188.9 26 4

partition unbalanced 102 5 4 2382.3 177.2 19 3

partition unbalanced pivot 120 6 4 2707.8 196.2 19 3

rectangle basic 293 18 2 18801.2 396.3 7 2

rectangle class 421 21 5 43203.7 620.1 7 2

rectangle tuples 277 14 2 15627.7 403.8 7 2

scope diffname 144 12 3 2779.7 188.0 2 1

scope samename 156 12 3 2413.3 183.6 2 1

whitespace linedup 275 14 1 6480.0 216.0 13 3

whitespace zigzag 259 14 1 6480.0 216.0 13 3

Table 21: Metrics for all 25 Python programs (10 bases, 2-3 versions). From left to right: code characters, code lines,
Cyclomatic Complexity, Halstead Effort, Halstead Volume, output characters, output lines.
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C Appendix - Computer Example

;;; Author: Michael Hansen

;;; Created on 2015-03-06 14:46:21.715348

(in-package :cdo)

;;; Constraints added by default

(defparameter *computer-configuration-default-constraints* ’())

;;; Instance parameters

(defparameter *components-n* 8)

(defparameter *memory-type-boost* 5)

;;; --------------------------------------------------------------------------

(defun print-component (comp)

(let* ((performance (v@ (comp) performance))

(comp-type (name^ (e@ comp component-type)))

(vendor (name^ (e@ comp component-details vendor vendor-choice)))

(cost (v@ (comp component-details product-info) cost))

(performance (v@ (comp component-details product-info) performance))

(model (value-of (v@ (comp component-details product-info) model)))

(used (name^ (e@ comp component-role)))

(mem-type (when (equale (e@ comp component-type) memory)

(name^ (e@ comp component-type memory memory-type))))

)

(with-output-to-string

(str)

(format str "~a [~a] ~a ~a~a (c:~a, p:~a)"
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(if (eq used ’used) "*" " ")

comp-type vendor

(if (ground? model) model "Unknown Model")

(cond

((eq mem-type ’type-a) ", A")

((eq mem-type ’type-b) ", B")

(t ""))

(if (ground? cost) cost "?")

(if (ground? performance) performance "?"))

)

))

(defun print-configuration (cfg)

(let* ((cost (v@ (cfg) cost))

(performance (v@ (cfg) performance))

(components (entities^ (n@ cfg components)))

)

(with-output-to-string

(str)

(format str "Configuration (cost:~a, perf:~a):~%"

(if (ground? cost) cost "?")

(if (ground? performance) performance "?"))

(dolist (comp components)

(format str " ~a~%" (print-component comp))

)

(format str "~%")

)

))

;;; ==========================================================================
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;;; Structure

;;; ==========================================================================

;;; Top-level entities

(defun computer-configuration_ ( &rest constraints)

(multiple-value-bind (local-constraints relayed-constraints)

(isolate-constraints :computer-configuration

(append constraints *computer-configuration-default-constraints*) )

‘(let* (

(components

,(apply #’dm ’components *components-n*

#’component_ relayed-constraints))

(computer-configuration

(de ’computer-configuration

:r ( components )

:v ( ,(dv ’cost (an-integerv))

,(dv ’performance (an-integerv)) )

)

))

;;

,@local-constraints

;;

computer-configuration )))

(defun component_ (n &rest constraints)

(multiple-value-bind (local-constraints relayed-constraints)

(isolate-constraints :component constraints n)

‘(let* (

(component-details

215



(da ’component-details

(de ’product-info

:v ( ,(dv ’cost (an-integerv))

,(dv ’performance (an-integerv))

,(dv ’model (a-stringv)) )

)

,(apply #’vendor_ relayed-constraints)

))

(component-role

(ds ’component-role

(de ’used

)

(de ’not-used

)

))

(component-type

(ds ’component-type

,(apply #’memory_ relayed-constraints)

(de ’graphics

)

(de ’sound

)

))

(component

(de ’component

:r ( component-details component-role component-type )

)

))

;;
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,@local-constraints

;;

component )))

(defun vendor_ ( &rest constraints)

(multiple-value-bind (local-constraints relayed-constraints)

(isolate-constraints :vendor constraints )

‘(let* (

(vendor-choice

(ds ’vendor-choice

(de ’invideo

)

(de ’slamsong

)

(de ’tortoise-bay

)

))

(vendor

(de ’vendor

:r ( vendor-choice )

)

))

;;

,@local-constraints

;;

vendor )))

(defun memory_ ( &rest constraints)

(multiple-value-bind (local-constraints relayed-constraints)
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(isolate-constraints :memory constraints )

‘(let* (

(memory-type

(ds ’memory-type

(de ’type-a

)

(de ’type-b

)))

(memory

(de ’memory

:r ( memory-type )

)

))

;;

,@local-constraints

;;

memory )))

;;; ---------------------------------------------------------------------------

;;; Function to count solutions

(defun computer-configuration-counter_ (&rest constraints)

(multiple-value-bind (local-constraints relayed-constraints)

(isolate-constraints :computer-configuration constraints)

‘(let ((count 0))

(for-effects

(let ((return-value

(progn
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(let* (

(components

,(apply #’dm ’components *components-n*

#’component_ relayed-constraints))

(computer-configuration

(de ’computer-configuration

:r ( components )

:v ( ,(dv ’cost (an-integerv))

,(dv ’performance (an-integerv)) )

)

))

;;

,@local-constraints

;;

computer-configuration ))))

return-value

(global

(setf count (1+ count)))))

count)))

;;; ==========================================================================

;;; Constraints

;;; ==========================================================================

(define-ma-constraint-fn component-active (comp)

(equale (e@ comp component-role) used))

(define-ma-constraint-fn has-graphics (comp)

(andv
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(equale (e@ comp component-role) used)

(equale (e@ comp component-type) graphics)))

(define-ma-constraint-fn has-sound (comp)

(andv

(equale (e@ comp component-role) used)

(equale (e@ comp component-type) sound)))

(define-ma-constraint-fn has-memory (comp)

(andv

(equale (e@ comp component-role) used)

(equale (e@ comp component-type) memory)))

(define-constraint max-4-active

:computer-configuration

(at-most-ma 4 component-active (n@ components)))

(define-constraint only-1-graphics-card

:computer-configuration

(exactly-ma 1 has-graphics (n@ components)))

(define-constraint only-1-sound-card

:computer-configuration

(exactly-ma 1 has-sound (n@ components)))

(define-constraint 1-or-2-memory

:computer-configuration

(at-least-ma 1 has-memory (n@ components)))
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;; Constrain product types by vendor

(define-constraint vendors-types

:component

(let* ((vendor-choice (e@ component component-details vendor vendor-choice))

(component-type (e@ component component-type))

)

(cond

((equale vendor-choice invideo) (equale component-type graphics))

((equale vendor-choice tortoise-bay) (equale component-type sound))

((equale vendor-choice slamsong) (orv

(equale component-type graphics)

(equale component-type sound)

(equale component-type memory)))

(t t)

)

))

;; Sum component costs for a configuration

(define-constraint config-cost

:computer-configuration

(let ((comp-costs (mapcar

(lambda (comp)

(ifv (equale (e@ comp component-role) used)

(v@ (comp component-details product-info) cost)

0))

(entities^ (n@ components))))

)

(equalv (v@ (computer-configuration) cost) (applyv #’+v comp-costs))

)

)
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;; Sum component performance for a configuration

;; (add boost for same memory types)

(define-constraint config-perf

:computer-configuration

(let* ((mem-count (applyv #’+v

(mapcar

(lambda (comp)

(ifv (andv

(equale (e@ comp component-role) used)

(equale (e@ comp component-type) memory))

1

0))

(entities^ (n@ components)))))

(mem-types (remove-duplicates

(remove ’nil

(mapcar

(lambda (comp)

(ifv (andv

(equale (e@ comp component-role) used)

(equale (e@ comp component-type) memory))

(name^ (e@ comp component-type memory

memory-type))

nil))

(entities^ (n@ components))))))

(mem-boost (ifv (andv (>v mem-count 1)

(eq (length mem-types) 1))

*memory-type-boost*

0))

(comp-perfs (mapcar
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(lambda (comp)

(ifv (equale (e@ comp component-role) used)

(v@ (comp component-details product-info)

performance)

0))

(entities^ (n@ components))))

)

(equalv (v@ (computer-configuration) performance)

(+v mem-boost (applyv #’+v comp-perfs)))

)

)

;; Force zero cost

(define-constraint no-cost

:computer-configuration

(equalv (v@ (computer-configuration) cost) 0))

;; Force new graphics card

(define-constraint new-graphics-card

:component

(ifv (andv

(equale (e@ component component-role) active)

(equale (e@ component component-type) graphics))

(>v (v@ (component component-details product-info) cost) 0)

t

))

;;; ==========================================================================
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;;; Examples

;;; ==========================================================================

;; One solution, no constraints

(print

(soaCDO-solutions

(computer-configuration_)

:one

:print-fun #’print-configuration))

;; Configuration (cost:?, perf:?):

;; * [MEMORY] INVIDEO Unknown Model, A (c:?, p:?)

;; * [MEMORY] INVIDEO Unknown Model, A (c:?, p:?)

;; * [MEMORY] INVIDEO Unknown Model, A (c:?, p:?)

;; * [MEMORY] INVIDEO Unknown Model, A (c:?, p:?)

;; * [MEMORY] INVIDEO Unknown Model, A (c:?, p:?)

;; * [MEMORY] INVIDEO Unknown Model, A (c:?, p:?)

;; * [MEMORY] INVIDEO Unknown Model, A (c:?, p:?)

;; * [MEMORY] INVIDEO Unknown Model, A (c:?, p:?)

;; ----------------------------------------------------------------------------

(defparameter *available-components*

(list

;; New components

(set-ma-instance-properties

’(:component) ’(1)

:choices ’(

((component component-details vendor vendor-choice) invideo)
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((component component-type) graphics)

)

:variables ’(

(((component component-details product-info) model) "D-Force")

(((component component-details product-info) cost) 200)

(((component component-details product-info) performance) 10)

)

)

(set-ma-instance-properties

’(:component) ’(2)

:choices ’(

((component component-details vendor vendor-choice) slamsong)

((component component-type) memory)

((component component-type memory memory-type) type-b)

)

:variables ’(

(((component component-details product-info) model) "DRR9")

(((component component-details product-info) cost) 20)

(((component component-details product-info) performance) 10)

)

)

(set-ma-instance-properties

’(:component) ’(3)

:choices ’(

((component component-details vendor vendor-choice) tortoise-bay)

((component component-type) sound)
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)

:variables ’(

(((component component-details product-info) model) "Waves")

(((component component-details product-info) cost) 50)

(((component component-details product-info) performance) 10)

)

)

(set-ma-instance-properties

’(:component) ’(4)

:choices ’(

((component component-details vendor vendor-choice) slamsong)

((component component-type) memory)

((component component-type memory memory-type) type-a)

;; ((component component-role) used)

)

:variables ’(

(((component component-details product-info) model) "DRR7")

(((component component-details product-info) cost) 10)

(((component component-details product-info) performance) 5)

)

)

(set-ma-instance-properties

’(:component) ’(5)

:choices ’(

((component component-details vendor vendor-choice) invideo)

((component component-type) graphics)
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)

:variables ’(

(((component component-details product-info) model) "B-Force")

(((component component-details product-info) cost) 100)

(((component component-details product-info) performance) 7)

)

)

;; Existing components

(set-ma-instance-properties

’(:component) ’(6)

:choices ’(

((component component-details vendor vendor-choice) slamsong)

((component component-type) memory)

((component component-type memory memory-type) type-a)

;; ((component component-role) used)

)

:variables ’(

(((component component-details product-info) model) "DRR7")

(((component component-details product-info) cost) 0)

(((component component-details product-info) performance) 5)

)

)

(set-ma-instance-properties

’(:component) ’(7)

:choices ’(

((component component-details vendor vendor-choice) slamsong)
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((component component-type) sound)

)

:variables ’(

(((component component-details product-info) model) "Puddle")

(((component component-details product-info) cost) 0)

(((component component-details product-info) performance) 1)

)

)

(set-ma-instance-properties

’(:component) ’(8)

:choices ’(

((component component-details vendor vendor-choice) slamsong)

((component component-type) graphics)

)

:variables ’(

(((component component-details product-info) model) "A-Force")

(((component component-details product-info) cost) 0)

(((component component-details product-info) performance) 2)

)

)))

;; ----------------------------------------------------------------------------

;; One solution, just components

(print

(soaCDO-solutions

(apply #’computer-configuration_
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(cons config-cost

(cons config-perf

*available-components*)))

:one

:print-fun #’print-configuration))

;; Configuration (cost:380, perf:50):

;; * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; * [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

;; * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; * [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

;; * [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

;; * [SOUND] SLAMSONG Puddle (c:0, p:1)

;; * [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

;; ----------------------------------------------------------------------------

(defparameter *default-constraints*

‘(

,config-cost

,config-perf

,max-4-active

,only-1-graphics-card

,only-1-sound-card

,1-or-2-memory

,vendors-types
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,@available-components

))

;; ----------------------------------------------------------------------------

;; One solution, no additonal constraints

(print

(soaCDO-solutions

(apply #’computer-configuration_

*default-constraints*)

:one

:print-fun #’print-configuration))

;; Configuration (cost:280, perf:35):

;; * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; * [MEMORY] SLAMSONG DRR9 B (c:20, p:10)

;; * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; * [MEMORY] SLAMSONG DRR7 A (c:10, p:5)

;; [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; [MEMORY] SLAMSONG DRR7 A (c:0, p:5)

;; [SOUND] SLAMSONG Puddle (c:0, p:1)

;; [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

;; ----------------------------------------------------------------------------

;; One solution, force no cost

(print

(soaCDO-solutions

(apply #’computer-configuration_

(cons no-cost *default-constraints*))
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:one

:print-fun #’print-configuration))

;; Configuration (cost:0, perf:8):

;; [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

;; [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

;; [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

;; * [SOUND] SLAMSONG Puddle (c:0, p:1)

;; * [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

;; ----------------------------------------------------------------------------

(defun performance-utility (sol)

(value-of (v@ (sol) performance)))

;; Best performance

(multiple-value-bind (best-solutions best-value util-values)

(soaCDO-solutions

(apply #’computer-configuration_

*default-constraints*)

:best

:utility-fun #’performance-utility

:objective-fun #’>

:print-fun #’print-configuration)

(print best-solutions))
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;; Configuration (cost:260, perf:35):

;; * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

;; * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; * [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

;; [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

;; [SOUND] SLAMSONG Puddle (c:0, p:1)

;; [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

;; Configuration (cost:270, perf:35):

;; * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; * [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

;; * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

;; [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

;; [SOUND] SLAMSONG Puddle (c:0, p:1)

;; [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

;; Configuration (cost:280, perf:35):

;; * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; * [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

;; * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; * [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

;; [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

;; [SOUND] SLAMSONG Puddle (c:0, p:1)

;; [GRAPHICS] SLAMSONG A-Force (c:0, p:2)
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;; ----------------------------------------------------------------------------

;; Highest performance (first), lowest cost (second)

(defun better-2 (a b)

(cond

((eq (first a) (first b)) (< (second a) (second b)))

(t (> (first a) (first b)))))

(defun performance-and-cost-utility (sol)

(list

(value-of (v@ (sol) performance))

(value-of (v@ (sol) cost))))

;; Best performance with lowest cost

(multiple-value-bind (best-solutions best-value util-values)

(soaCDO-solutions

(apply #’computer-configuration_

*default-constraints*)

:best

:utility-fun #’performance-and-cost-utility

:objective-fun #’better-2

:print-fun #’print-configuration)

(print best-solutions))

;; Configuration (cost:260, perf:35):

;; * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

;; * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; * [MEMORY] SLAMSONG DRR7, A (c:10, p:5)
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;; [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

;; [SOUND] SLAMSONG Puddle (c:0, p:1)

;; [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

;; ---------------------------------------------------------------------------
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D Appendix - Mr. Bits Code

;; ===========================================================================

;; MR. BITS

;; ===========================================================================

;; Maximum number of seconds the model can run

(defparameter *max-time* 500)

;; ---------------------------------------------------------------------------

;; PROGRAM (funcall - space)

;; ---------------------------------------------------------------------------

;; 1. def f(x):

;; 2. return x + 4

;; 3.

;; 4. print f(1) * f(0) * f(-1)

;; ---------------------------------------------------------------------------

; ----------------------------------------------------------------------------

; GOAL STACK

; ----------------------------------------------------------------------------

;; Fixed goal stack for model

(defparameter *goal-stack* ’(

go-to-line-1

remember-line

go-to-line-4

link-to-value-f-x-L4-C8-0-1

go-to-line-2
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do-read-line-2-f-x-1

compute-sum-line-2-1-1

remember-line

go-to-line-4

remember-line

link-to-value-f-x-L4-C15-1-1

go-to-line-2

do-read-line-2-f-x-2

compute-sum-line-2-2-1

remember-line

go-to-line-4

remember-line

link-to-value-f-x-L4-C22-2-1

go-to-line-2

do-read-line-2-f-x-3

compute-sum-line-2-3-1

remember-line

go-to-line-4

compute-prod-line-4-1-1

compute-prod-line-4-2-1

remember-line

fixate-output-box

type-response

return-from-output-box

))

;; List of responses that will be typed

(defparameter *responses* (list

(format nil "60~%")

))
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;; List of tokens to put in visicon

(defparameter *tokens* ‘(

(0 0 33 23 "def")

(44 0 55 23 "f")

(55 0 55 23 "(x):")

(44 23 66 23 "return")

(121 23 11 23 "x")

(143 23 11 23 "+")

(165 23 11 23 "4")

(0 69 55 23 "print")

(66 69 44 23 "f")

(77 69 44 23 "(1)")

(121 69 11 23 "*")

(143 69 44 23 "f")

(154 69 44 23 "(0)")

(198 69 11 23 "*")

(220 69 55 23 "f")

(231 69 55 23 "(-1)")

))

; ----------------------------------------------------------------------------

;; Convert text character to a key ACT-R can type

(defun actr-key (c)

(cond

((eq c #\newline) ’return)

((eq c #\space) ’space)

((eq c #\,) ’comma)

(t (string c))))
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;; Get the visicon y coordinate from a line number (1-based)

(defun line-to-y (line)

(let ((y-pos (* 23 (- line 1)))

(line-height (max (round 23 .8) (+ 23 1))))

(+ y-pos (round line-height 2))))

;; Get the visicon x coordinate from a column number (0-based)

(defun col-to-x (col)

(* col 11))

(defmethod rpm-window-key-event-handler ((win rpm-window) key)

(proc-display))

;; Evalate the goal stack and type responses

(defun do-trial ()

(reset)

; Consider underscores, commas, parens, colons, and brackets as

; word separating characters.

(add-word-characters #\_ #\, #\( #\) #\: #\[ #\])

; Create an experiment window

(let* ((tokens *tokens*)

(window (open-exp-window "eyeCode Trial" :width 1600 :height 500)))

; Add all tokens to the visicon

(loop for (x y width height text)

(integer integer integer integer string)

in tokens
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do (let ((static-text

(add-text-to-exp-window :text text :x x :y y

:width width :height height)))

; Use actual width and height of the token text

(setf (text-height static-text) 23)

(setf (str-width-fct static-text)

(lambda (str) (* 11 (length str))))))

; Add the continue button (ends the trial)

(add-button-to-exp-window

:text "Continue" :x 1115 :y 370

:width 75 :height 25)

; Go, Johnny, Go, Go, Go

(progn

(install-device window)

(proc-display)

(print-visicon)

(run *max-time*))))

; ----------------------------------------------------------------------------

(clear-all)

(define-model mr-bits

; Fixed random seed for reproducibility

(sgp :seed (123456 0))

; Set ACT-R parameters

(sgp :v t :needs-mouse nil :show-focus t :esc nil :lf 0.01 :trace-detail high
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:imaginal-delay 0 :act t :bll nil :rt -2

:motor-feature-prep-time 0.001

:motor-initiation-time 0.05

:motor-burst-time 0.001

)

; --------------------------------------------------------------------------

; DECLARATIVE MEMORY

; --------------------------------------------------------------------------

; Define chunk types

(chunk-type model-state state token line-num response resp-idx resp-char

last-x last-y trace-line trace-col trace-ctx trace-name trace-call trace-val

trace-def orig-def last-ctx)

; Details of a line of code. A missing chunk for a line forces all tokens

; to be read.

(chunk-type line-info line-num)

; Value or reference for a variable

(chunk-type variable-info

context ; function name or "" for global

name ; variable name

call-idx ; index of current function call

def-num ; index of variable definition in context

has-value ; :yes if the variable’s value is in memory,

; :no otherwise

ref-context ; :empty or context of source variable

ref-name ; :empty or name of source variable

ref-call ; :empty or function call index of source variable
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ref-def ; :empty or index of source variable definition

val-line ; :empty or line number of literal value

val-col ; :empty or column offset of literal value

)

; Knowledge of binary sums, differences, products, etc.

(chunk-type sum-result first second)

(chunk-type diff-result first second)

(chunk-type prod-result first second)

(chunk-type and-result first second)

(chunk-type less-than-result first second)

(chunk-type greater-than-result first second)

(chunk-type (trace-location (:include visual-location))

context name trace-line trace-col)

; Add sums from -10 to 10

(add-dm-fct

(loop for i from -10 to 10

append (loop for j from -10 to 10

collect (list (intern (string-upcase

(format nil "sum-~a-~a" i j)))

’isa ’sum-result

’first i

’second j))))

; Add subtractions from 0 to 10

(add-dm-fct

(loop for i from 0 to 10

append (loop for j from 0 to 10
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collect (list (intern (string-upcase

(format nil "diff-~a-~a" i j)))

’isa ’diff-result

’first i

’second j))))

; Add products from -10 to 20

(add-dm-fct

(loop for i from -10 to 20

append (loop for j from -10 to 20

collect (list (intern (string-upcase

(format nil "prod-~a-~a" i j)))

’isa ’prod-result

’first i

’second j))))

; Add less-than comparisons from -10 to 10

(add-dm-fct

(loop for i from -10 to 10

append (loop for j from -10 to 10

collect (list (intern (string-upcase

(format nil "less-than-~a-~a" i j)))

’isa ’less-than-result

’first i

’second j))))

; Add greater-than comparisons from -10 to 10

(add-dm-fct

(loop for i from -10 to 10

append (loop for j from -10 to 10
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collect (list (intern (string-upcase

(format nil "greater-than-~a-~a" i j)))

’isa ’greater-than-result

’first i

’second j))))

; Add binary ANDs

(add-dm-fct

(loop for a in ’(t nil)

for x = (if a ’True ’False)

append (loop for b in ’(t nil)

for y = (if b ’True ’False)

collect (list (intern (string-upcase

(format nil "and-~a-~a" x y)))

’isa ’and-result

’first x

’second y))))

; Add visual locations of variables

(add-dm-fct

(list

‘(trace-value-4-8

isa trace-location screen-x ,(col-to-x 8) screen-y ,(line-to-y 4)

trace-line 4 trace-col 8)

‘(trace-value-4-15

isa trace-location screen-x ,(col-to-x 15) screen-y ,(line-to-y 4)

trace-line 4 trace-col 15)

‘(trace-value-4-22

isa trace-location screen-x ,(col-to-x 22) screen-y ,(line-to-y 4)

trace-line 4 trace-col 22)
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))

(add-dm

(state isa chunk)

; Add chunks for static model states

(start isa chunk)

(finish-exp isa chunk)

(find-next-token isa chunk)

(search-for-token isa chunk)

(attend-to-token isa chunk)

(read-or-remember-line isa chunk)

(retrieve-line-result isa chunk)

(check-goal-stack isa chunk)

; Location of output box

(output-box-location isa visual-location

screen-x 1115 screen-y 80

width 340 height 270

color white)

; Add chunks for dynamic model states

(link-to-value-f-x-L4-C8-0-1 isa chunk)

(compute-prod-line-4-1-1 isa chunk)

(compute-sum-line-2-2-1 isa chunk)

(compute-prod-line-4-2-1 isa chunk)

(compute-sum-line-2-1-1 isa chunk)

(compute-sum-line-2-3-1 isa chunk)
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(do-read-line-2-f-x-3 isa chunk)

(do-read-line-2-f-x-2 isa chunk)

(do-read-line-2-f-x-1 isa chunk)

(link-to-value-f-x-L4-C15-1-1 isa chunk)

(link-to-value-f-x-L4-C22-2-1 isa chunk)

; Create initial goal

(goal isa model-state state check-goal-stack line-num 1))

; --------------------------------------------------------------------------

; PRODUCTIONS

; --------------------------------------------------------------------------

; Try to remember details of line from memory

(p read-or-remember-line

=goal>

isa model-state

state read-or-remember-line

line-num =line-num

==>

+retrieval>

isa line-info

line-num =line-num

=goal>

state retrieve-line-result

!output! (retrieve line =line-num)

)

; Line details remembered, continue on without reading
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(p retrieve-line-success

=goal>

isa model-state

state retrieve-line-result

=retrieval>

isa line-info

==>

=goal>

state check-goal-stack

)

; Unable to remember line, read each token before continuing

(p retrieve-line-failed

=goal>

isa model-state

state retrieve-line-result

line-num =line-num

?retrieval>

state error

==>

=goal>

state find-next-token

!output! (Reading line =line-num)

)

; --------------------------------------------------------------------------

; Shift visual attention to the next visual token

(p shift-attention-to-line

=goal>
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isa model-state

state shift-attention-to-line

=visual-location>

isa visual-location

screen-x =x

screen-y =y

?visual>

state free

==>

+visual>

isa move-attention

screen-pos =visual-location

=goal>

state attend-first-token

last-x =x

last-y =y

)

; Attend to the first token on a line, try to remember

; the line’s details.

(p attend-first-token

=goal>

isa model-state

state attend-first-token

=visual>

isa text

value =token

==>

=goal>

state read-or-remember-line
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token =token

!output! (read token =token)

)

; Shift visual attention to the next visual token

(p search-for-token

=goal>

isa model-state

state search-for-token

=visual-location>

isa visual-location

screen-x =x

screen-y =y

?visual>

state free

==>

+visual>

isa move-attention

screen-pos =visual-location

=goal>

state attend-to-token

last-x =x

last-y =y

)

; Extract the text from the attended token

(p attend-encoding-token

=goal>

isa model-state

state attend-to-token
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=visual>

isa text

value =token

==>

=goal>

state find-next-token

token =token

!output! (read token =token)

)

; Look for the next token to the right

(p find-next-token

=goal>

isa model-state

state find-next-token

==>

+visual-location>

isa visual-location

kind text

; Don’t attend to the continue button

< screen-x 1115

> screen-x current

screen-x lowest

screen-y current

=goal>

state search-for-token

token nil

)

; Finished reading the current line, record the details
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; in memory for later.

(p no-more-tokens-on-line

=goal>

isa model-state

state search-for-token

line-num =line-num

?visual-location>

state error

==>

=goal>

state check-goal-stack

!output! (Done reading line =line-num)

)

; Commit the details of the current line to memory

(p remember-line

=goal>

isa model-state

state remember-line

line-num =line-num

?imaginal>

state free

==>

+imaginal>

isa line-info

line-num =line-num

=goal>

state check-goal-stack

!output! (remembering line =line-num)

)
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; --------------------------------------------------------------------------

; Execute the next goal on the stack (done if no goals left)

(p check-goal-stack

=goal>

isa model-state

state check-goal-stack

==>

=goal>

state =state2

; Crucial that we force imaginal to clear.

; Otherwise the only thing that will clear it is a new chunk.

-imaginal>

!bind! =state2 (car *goal-stack*)

!eval! (setf *goal-stack* (cdr *goal-stack*))

!output! (Next goal is =state2)

)

; No goals left - experiment is over

; Find the continue button and move hand to the mouse

(p find-continue-button

=goal>

isa model-state

state nil

?manual>

state free

==>
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+visual-location>

isa visual-location

kind oval

+manual>

isa hand-to-mouse

=goal>

state click-continue-1

)

; Look at the continue button

(p click-continue-1

=goal>

isa model-state

state click-continue-1

=visual-location>

isa visual-location

screen-x =x

screen-y =y

?visual>

state free

?manual>

state free

==>

+visual>

isa move-attention

screen-pos =visual-location

+manual>

isa move-cursor

loc =visual-location

=goal>
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state click-continue-2

)

; Click the continue button

(p click-continue-2

=goal>

isa model-state

state click-continue-2

?visual>

state free

?manual>

state free

==>

+manual>

isa click-mouse

=goal>

state done

)

; Report amount of time taken to complete the experiment

(p experiment-is-over

=goal>

isa model-state

state done

?manual>

state free

==>

-goal>
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!bind! =time (mp-time-ms)

!output! (Trial completed at =time)

)

; --------------------------------------------------------------------------

; Prepare to type a sequence of characters

(p start-typing-response

=goal>

isa model-state

state type-response

==>

=goal>

state typing-response

response =response

resp-idx 0

resp-char =resp-char

!bind! =response (car *responses*)

!bind! =resp-char (actr-key (aref =response 0))

!eval! (setf *responses* (cdr *responses*))

!output! (Typing =response)

)

; Type the next character

(p typing-response

=goal>

isa model-state

state typing-response

response =response
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resp-idx =resp-idx

- resp-char nil

resp-char =resp-char

?manual>

state free

==>

+manual>

isa press-key

key =resp-char

=goal>

state typing-response

resp-idx =next-idx

resp-char =next-char

!bind! =next-idx (+ 1 =resp-idx)

!bind! =next-char (if (< =next-idx (length =response))

(actr-key (aref =response =next-idx)) nil)

!bind! =time (mp-time-ms)

!output! (Typed =resp-char at =time)

)

; No more characters to type

(p done-typing-response

=goal>

isa model-state

state typing-response

resp-char nil

==>

=goal>

state check-goal-stack
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)

; Look at the output box

(p fixate-output-box

=goal>

isa model-state

state fixate-output-box

?visual>

state free

==>

+visual>

isa move-attention

screen-pos output-box-location

=goal>

state fixating-output-box

)

; Wait for output box to be fixated

(p output-box-fixated

=goal>

isa model-state

state fixating-output-box

?visual>

state free

==>

=goal>

state check-goal-stack

)

; Find the visual location that was being
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; fixated before the output box.

(p return-from-output-box

=goal>

isa model-state

state return-from-output-box

last-x =last-x

last-y =last-y

==>

+visual-location>

isa visual-location

screen-x =last-x

screen-y =last-y

=goal>

state return-from-output-box-move

!output! (Returning to =last-x =last-y)

)

; Move eyes to the previous location

(p return-from-output-box-move

=goal>

isa model-state

state return-from-output-box-move

=visual-location>

isa visual-location

screen-x =x

screen-y =y

?visual>

state free

==>
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+visual>

isa move-attention

screen-pos =visual-location

=goal>

state return-from-output-box-finish

)

; Check for the next goal

(p return-from-output-box-finish

=goal>

isa model-state

state return-from-output-box-finish

?visual>

state free

==>

=goal>

state check-goal-stack

)

; --------------------------------------------------------------------------

;; An explicit value was not found for the variable.

;; Try to find a reference or location in declarative memory.

(p recalling-variable-no-value

=goal>

isa model-state

state recalling-variable

trace-ctx =trace-ctx

trace-name =trace-name

trace-call =trace-call
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trace-def =trace-def

?retrieval>

state error

==>

+retrieval>

isa variable-info

context =trace-ctx

name =trace-name

call-idx =trace-call

def-num =trace-def

has-value :no

=goal>

state recalling-variable-no-value

!output! (Recalling location or reference for =trace-name

in context =trace-ctx call =trace-call

def =trace-def)

)

;; No location or reference was found for the variable.

;; Try to find a previous definition in the current context.

(p recalling-variable-no-ref-or-loc

=goal>

isa model-state

state recalling-variable-no-value

trace-ctx =trace-ctx

trace-name =trace-name

trace-call =trace-call

trace-def =trace-def

> trace-def 0
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?retrieval>

state error

==>

+retrieval>

isa variable-info

context =trace-ctx

name =trace-name

call-idx =trace-call

def-num =next-def-num

has-value :yes

=goal>

state recalling-variable

trace-def =next-def-num

; Previous definition

!bind! =next-def-num (- =trace-def 1)

!output! (Trying again with =trace-name in context =trace-ctx

call =trace-call def =next-def-num)

)

(p recalling-variable-change-context

=goal>

isa model-state

state recalling-variable-no-value

trace-ctx =trace-ctx

trace-name =trace-name

trace-ctx =trace-ctx

last-ctx =last-ctx

<= trace-def 0

?retrieval>
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state error

==>

+retrieval>

isa variable-info

context =last-ctx

name =trace-name

has-value :yes

=goal>

state recalling-variable

!output! (Changing context for =trace-name from

=trace-ctx to =last-ctx)

)

;; Got a reference to another variable (possibly in a different context).

;; Try to retrieve a value, reference, or location for *that* variable.

(p recalling-variable-got-reference

=goal>

isa model-state

state recalling-variable-no-value

=retrieval>

isa variable-info

has-value :no

ref-context =ref-context

ref-name =ref-name

ref-call =ref-call

ref-def =ref-def

val-line :empty

call-idx =call-idx

==>
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+retrieval>

isa variable-info

context =ref-context

name =ref-name

call-idx =ref-call

def-num =ref-def

=goal>

state recalling-variable-no-value

!output! (Following variable reference to =ref-name in context

=ref-context call =ref-call def =ref-def)

)

;; Got a location (line/column) for a variable’s value.

;; Recall the associated visual location, and look there.

(p recalling-variable-got-location

=goal>

isa model-state

state recalling-variable-no-value

trace-val =trace-val

=retrieval>

isa variable-info

has-value :no

def-num =def-num

ref-context :empty

val-line =val-line

val-col =val-col

==>

+retrieval>

isa trace-location

262



trace-line =val-line

trace-col =val-col

=goal>

state trace-variable-remember

trace-line =val-line

trace-col =val-col

trace-def =def-num

; Slip an extra goal into the stack to write the

; variable’s value after tracing.

!eval! (setf *goal-stack*

(append (list ’trace-variable-write) *goal-stack*))

!output! (Need to trace to line =val-line col =val-col

with write =trace-val)

)

; Remembered the variable’s trace location. Find it.

(p trace-variable-remember

=goal>

isa model-state

state trace-variable-remember

=retrieval>

isa trace-location

trace-line =trace-line

trace-col =trace-col

?visual>

state free

==>

+visual-location>
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isa visual-location

:nearest =retrieval

=goal>

state trace-variable-move

!output! (Preparing trace to line =trace-line col =trace-col)

)

; Move the eyes to the trace location

(p trace-variable-move

=goal>

isa model-state

state trace-variable-move

trace-line =trace-line

trace-col =trace-col

=visual-location>

isa visual-location

?visual>

state free

==>

+visual>

isa move-attention

screen-pos =visual-location

=goal>

state trace-variable-moving

!output! (Tracing to line =trace-line col =trace-col)

)

; Start reading at the current location. Reading
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; will proceed to the end of the line, and then

; the goal stack will be checked.

(p trace-variable-moving

=goal>

isa model-state

state trace-variable-moving

trace-line =trace-line

?visual>

state free

==>

=goal>

state find-next-token

!output! (Reading line =trace-line)

)

; Write the value of the traced variable to memory.

; If it’s remembered next time, the trace will be

; avoided.

(p trace-variable-write

=goal>

isa model-state

state trace-variable-write

trace-ctx =trace-ctx

trace-name =trace-name

trace-call =trace-call

trace-line =trace-line

trace-col =trace-col

trace-val =trace-val

orig-def =orig-def
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?imaginal>

state free

==>

+imaginal>

isa variable-info

context =trace-ctx

name =trace-name

call-idx =trace-call

def-num =orig-def

has-value =trace-val

ref-context :empty

ref-name :empty

ref-call :empty

ref-def :empty

val-line =trace-line

val-col =trace-col

=goal>

state check-goal-stack

!output! (Wrote traced variable =trace-ctx =trace-name call

=trace-call def =orig-def with value =trace-val)

)

; --------------------------------------------------------------------------

; DYNAMIC PRODUCTIONS

; --------------------------------------------------------------------------

; Shift visual attention to a specific line

(p go-to-line-1
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=goal>

isa model-state

state go-to-line-1

==>

+visual-location>

isa visual-location

screen-y =screen-y

screen-x lowest

=goal>

state shift-attention-to-line

line-num 1

!bind! =screen-y (line-to-y 1)

)

; Shift visual attention to a specific line

(p go-to-line-2

=goal>

isa model-state

state go-to-line-2

==>

+visual-location>

isa visual-location

screen-y =screen-y

screen-x lowest

=goal>

state shift-attention-to-line

line-num 2
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!bind! =screen-y (line-to-y 2)

)

; Shift visual attention to a specific line

(p go-to-line-3

=goal>

isa model-state

state go-to-line-3

==>

+visual-location>

isa visual-location

screen-y =screen-y

screen-x lowest

=goal>

state shift-attention-to-line

line-num 3

!bind! =screen-y (line-to-y 3)

)

; Shift visual attention to a specific line

(p go-to-line-4

=goal>

isa model-state

state go-to-line-4

==>

+visual-location>

isa visual-location
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screen-y =screen-y

screen-x lowest

=goal>

state shift-attention-to-line

line-num 4

!bind! =screen-y (line-to-y 4)

)

; Write the variable’s value to memory by

; placing a chunk in the imaginal buffer and

; letting it get flushed.

(p link-to-value-f-x-L4-C8-0-1

=goal>

isa model-state

state link-to-value-f-x-L4-C8-0-1

?imaginal>

state free

==>

+imaginal>

isa variable-info

context "f"

name "x"

call-idx 0

def-num 0

ref-context :empty

ref-name :empty

ref-call :empty

ref-def :empty
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val-line 4

val-col 8

has-value :no

=goal>

state check-goal-stack

!output! (Wrote variable f x 0)

)

; Try to recall the variable’s value from memory.

; A retrieval failure may force a trace.

(p do-read-line-2-f-x-1-retrieve

=goal>

isa model-state

state do-read-line-2-f-x-1

==>

+retrieval>

isa variable-info

context "f"

name "x"

call-idx 0

def-num 0

has-value :yes

=goal>

state recalling-variable

trace-ctx "f"

trace-name "x"

trace-call 0

trace-val :yes

trace-def 0
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orig-def 0

last-ctx ""

!output! (Recalling variable value for "x" in context "f"

call 0 def 0)

)

; Successfully recalled the variable’s value.

; Proceed with the next goal.

(p do-read-line-2-f-x-1-success

=goal>

isa model-state

state recalling-variable

=retrieval>

isa variable-info

has-value :yes

==>

=goal>

state check-goal-stack

)

; Recall the answer for a sum, product, etc.

; This should never fail.

(p compute-sum-line-2-1-1

=goal>

isa model-state

state compute-sum-line-2-1-1

==>

+retrieval>
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isa sum-result

first 1

second 4

=goal>

state compute-sum-line-2-1-1-done

!output! (Computing sum of 1 4)

)

; Successfully remembered the answer.

; Proceed with the next goal.

(p compute-sum-line-2-1-1-done

=goal>

isa model-state

state compute-sum-line-2-1-1-done

=retrieval>

isa sum-result

first 1

second 4

==>

=goal>

state check-goal-stack

)

; Write the variable’s value to memory by

; placing a chunk in the imaginal buffer and

; letting it get flushed.

(p link-to-value-f-x-L4-C15-1-1

=goal>

isa model-state
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state link-to-value-f-x-L4-C15-1-1

?imaginal>

state free

==>

+imaginal>

isa variable-info

context "f"

name "x"

call-idx 1

def-num 0

ref-context :empty

ref-name :empty

ref-call :empty

ref-def :empty

val-line 4

val-col 15

has-value :no

=goal>

state check-goal-stack

!output! (Wrote variable f x 1)

)

; Try to recall the variable’s value from memory.

; A retrieval failure may force a trace.

(p do-read-line-2-f-x-2-retrieve

=goal>

isa model-state

state do-read-line-2-f-x-2

==>
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+retrieval>

isa variable-info

context "f"

name "x"

call-idx 1

def-num 0

has-value :yes

=goal>

state recalling-variable

trace-ctx "f"

trace-name "x"

trace-call 1

trace-val :yes

trace-def 0

orig-def 0

last-ctx ""

!output! (Recalling variable value for "x" in context "f"

call 1 def 0)

)

; Successfully recalled the variable’s value.

; Proceed with the next goal.

(p do-read-line-2-f-x-2-success

=goal>

isa model-state

state recalling-variable

=retrieval>

isa variable-info

has-value :yes
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==>

=goal>

state check-goal-stack

)

; Recall the answer for a sum, product, etc.

; This should never fail.

(p compute-sum-line-2-2-1

=goal>

isa model-state

state compute-sum-line-2-2-1

==>

+retrieval>

isa sum-result

first 0

second 4

=goal>

state compute-sum-line-2-2-1-done

!output! (Computing sum of 0 4)

)

; Successfully remembered the answer.

; Proceed with the next goal.

(p compute-sum-line-2-2-1-done

=goal>

isa model-state

state compute-sum-line-2-2-1-done

=retrieval>

isa sum-result
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first 0

second 4

==>

=goal>

state check-goal-stack

)

; Write the variable’s value to memory by

; placing a chunk in the imaginal buffer and

; letting it get flushed.

(p link-to-value-f-x-L4-C22-2-1

=goal>

isa model-state

state link-to-value-f-x-L4-C22-2-1

?imaginal>

state free

==>

+imaginal>

isa variable-info

context "f"

name "x"

call-idx 2

def-num 0

ref-context :empty

ref-name :empty

ref-call :empty

ref-def :empty

val-line 4

val-col 22
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has-value :no

=goal>

state check-goal-stack

!output! (Wrote variable f x 2)

)

; Try to recall the variable’s value from memory.

; A retrieval failure may force a trace.

(p do-read-line-2-f-x-3-retrieve

=goal>

isa model-state

state do-read-line-2-f-x-3

==>

+retrieval>

isa variable-info

context "f"

name "x"

call-idx 2

def-num 0

has-value :yes

=goal>

state recalling-variable

trace-ctx "f"

trace-name "x"

trace-call 2

trace-val :yes

trace-def 0

orig-def 0

last-ctx ""
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!output! (Recalling variable value for "x" in context "f"

call 2 def 0)

)

; Successfully recalled the variable’s value.

; Proceed with the next goal.

(p do-read-line-2-f-x-3-success

=goal>

isa model-state

state recalling-variable

=retrieval>

isa variable-info

has-value :yes

==>

=goal>

state check-goal-stack

)

; Recall the answer for a sum, product, etc.

; This should never fail.

(p compute-sum-line-2-3-1

=goal>

isa model-state

state compute-sum-line-2-3-1

==>

+retrieval>

isa sum-result

first -1

278



second 4

=goal>

state compute-sum-line-2-3-1-done

!output! (Computing sum of -1 4)

)

; Successfully remembered the answer.

; Proceed with the next goal.

(p compute-sum-line-2-3-1-done

=goal>

isa model-state

state compute-sum-line-2-3-1-done

=retrieval>

isa sum-result

first -1

second 4

==>

=goal>

state check-goal-stack

)

; Recall the answer for a sum, product, etc.

; This should never fail.

(p compute-prod-line-4-1-1

=goal>

isa model-state

state compute-prod-line-4-1-1

==>

+retrieval>
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isa prod-result

first 5

second 4

=goal>

state compute-prod-line-4-1-1-done

!output! (Computing prod of 5 4)

)

; Successfully remembered the answer.

; Proceed with the next goal.

(p compute-prod-line-4-1-1-done

=goal>

isa model-state

state compute-prod-line-4-1-1-done

=retrieval>

isa prod-result

first 5

second 4

==>

=goal>

state check-goal-stack

)

; Recall the answer for a sum, product, etc.

; This should never fail.

(p compute-prod-line-4-2-1

=goal>

isa model-state

state compute-prod-line-4-2-1
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==>

+retrieval>

isa prod-result

first 20

second 3

=goal>

state compute-prod-line-4-2-1-done

!output! (Computing prod of 20 3)

)

; Successfully remembered the answer.

; Proceed with the next goal.

(p compute-prod-line-4-2-1-done

=goal>

isa model-state

state compute-prod-line-4-2-1-done

=retrieval>

isa prod-result

first 20

second 3

==>

=goal>

state check-goal-stack

)

; --------------------------------------------------------------------------

; All pre-existing DM facts (sums, etc.) are assumed to be well rehearsed

(set-all-base-levels 100000 -1000)
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(goal-focus goal)

)
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E Appendix - Nibbles

E.1 Token Constraints

E.1.1 chars-to-token

Only applies if token is high detail.

Token Type Constraints

Symbol Token length is 1

Character is one of [ ] ( ) " , : = + *

Keyword Must be one of print, def, for, in, return

Token lengths must match keyword lengths

Name All characters are in a-z

Number All characters are in 0-9

Whitespace All characters are whitespace

Text Does not match other token types

At least 1 non-whitespace character

Unknown Must be set via assertion

E.2 Line Constraints

E.2.1 tokens-are-list

True if a collection of tokens form a List literal. The conditions are:

1st and last tokens are [ and ] Symbols

Either exactly 2 tokens (empty list),

or more than 2 tokens such that the count of , Symbol(s) is 1 less than the count of

Number(s) (numeric list)

E.2.2 tokens-to-lines

Only applies if line is high detail.
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Line Type Constraints

Unknown All tokens are Unknown

Whitespace All tokens are Whitespace

RHS expression form is N/A

Print-Line More than 1 token

1st token is print Keyword

RHS expression form is not N/A

Assignment-Line More than 2 tokens

1st token is a Name

2nd token is = Symbol

3rd token is not Whitespace

RHS expression form is not N/A

For-Loop-Line More than 3 tokens

1st token is for

2nd token is a Name

3rd token is in Keyword

Last token is : Symbol

Either 4th token is a Name,

or all but last tokens are a List

Function-Call More than 2 tokens

1st token is a Name

2nd token is ( Symbol

Last token is ) Symbol

Either exactly 3 tokens (no parameters),

or exactly 4 tokens and 3rd token is a Name (1 parameter)

Function-Def-Line More than 3 tokens

1st token is def Keyword
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Line Type Constraints (continued)

2nd token is ( Symbol

2nd-to-last token is ) Symbol

Last token is : Symbol

Either exactly 5 tokens (no parameters),

or exactly 6 tokens and 4th token is a Name (1 parameter)

Return-Line More than 1 token

1st token is return Keyword

RHS expression form is not N/A

E.2.3 rhs-expression-form

Only applies when RHS expression form is not N/A. Constraints apply only to RHS tokens.
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Expression Form Constraints

Literal Either exactly 1 token that is a Number (numeric literal),

or at least 2 tokens, 1st and last are " Symbols, and rest are Text (string

literal)

Variable Exactly 1 Name token

Literal + Literal Exactly 3 tokens

1st and last tokens are Numbers

2nd token is + Symbol

Variable + Literal Exactly 3 tokens

2nd token is + Symbol

Either 1st token is Name and 3rd token is Number,

or 1st token is Number and 3rd token is Name

Operator meaning is plus

Variable + Variable Exactly 3 tokens

1st and last tokens are Names

2nd token is + Symbol

Either operator meaning is plus if expression type is Number,

or operator meaning is append if expression type is String

E.2.4 rhs-expression-pytype

Only applies when RHS expression form is not N/A. Constraints apply only to RHS tokens.
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Expression PyType Constraints

Number Either exactly 1 Number token,

or every Token is a Name, Number, or + Symbol

All Name tokens have type Number

String Either exactly 2 " Symbol tokens,

or more than 2 tokens, 1st and last are " Symbols, and at least 1 Text

token

or every Token is a Name or + Symbol

All Name tokens have type String

N/A Set when RHS expression form is also N/A

E.2.5 whitespace-at-end

Ensures that all Whitespace tokens (if any) occur at the end of a line.

E.3 Line Group Constraints

E.3.1 lines-to-line-group

Only applies when line group detail is high.

Line Group Type Constraints

Function More than 1 line

1st line is a Function-Def-Line

2nd line is indented

For-Loop More than 1 line

1st line is a For-Loop-Line

2nd line is indented

Generic At least 1 line

Not any other line type

All lines are at the same indent level

Whitespace All lines are Whitespace
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E.3.2 all-lines-active

Ensures that every line is active in a single line group, and that lines n and n + 1 are either active in

the same group or line n + 1’s group comes after.

E.3.3 line-group-indent

If lines n and n + 1 are in the same line group, they must either be at the same indent level or n + 1

must be indented relative to n.
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Directory Services.

Honors and Organizations

• Software Carpentry Bootcamp Instructor (2012-present)

– Instructor for Software Carpentry bootcamps at Indiana University, Howard Hughes

Medical Institute, and Purdue University.

• Nominated for UW Student Employee of the Year (2006)

– Nominated for my work on the Computer-Aided Laboratory Instruction System (CALISYS)

project, a virtual lab environment similar to LabView for students to collect, manipulate, and

visualize real-time measurement data (C#, Windows Presentation Foundation).

• Microsoft Most Valuable Professional in Visual C# (2004-2005)

– Received for my work with the Wyoming ACM chapter as President and activity organizer.

• 4th place regional winner for Microsoft Imagine Cup (2004)

– Received for the ShopNET application, which provided a 3-D multi-user environment for

purchasing books from Amazon. Users inhabited a virtual bookstore that was populated with

http://www.kalendi.com
http://en.wikipedia.org/wiki/SyncML
http://chapacode.com
http://software-carpentry.org/bootcamps/index.html
http://www.ni.com/labview/
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://mvp.support.microsoft.com/gp/mvpfaqs
http://www.imaginecup.com


real products using Amazon Web Services. The application was written in C# and used a custom

OpenGL engine which was compatible with Quake 3 maps and models.

• President of the Wyoming Association of Computing Machinery chapter (2003-2004).

Core Courses

• Principles of Programming Languages (CSCI-B 521)

– Daniel Friedman: Fall 2009

• Advanced Operating Systems (CSCI-P 536)

– Andrew Lumsdaine: Fall 2009

• Introduction to Bayesian Data Analysis (PSY-P 533/534)

– John Kruschke: Fall 2009/Spring 2010

• Natural Language Processing (CSCI-B 651)

– Michael Gasser: Fall 2010

• Integrating Static and Dynamic Typing (CSCI-B 629)

– Amal Ahmed: Fall 2010

• Networks of the Brain (COGS-Q 610)

– Olaf Sporns: Spring 2011

http://www.cs.indiana.edu/classes/b521
http://www.cs.indiana.edu/~dfried
http://www.indiana.edu/~deanfac/blfal09/csci/csci_p536_2224.html
http://www.cs.indiana.edu/~lums
http://www.indiana.edu/~jkkteach/P533/
http://www.indiana.edu/~kruschke
http://www.cs.indiana.edu/classes/b651
http://www.cs.indiana.edu/~gasser
http://www.cs.indiana.edu/classes/b629-amal
http://www.cs.indiana.edu/~amal
http://www.indiana.edu/~deanfac/blspr11/cogs/cogs_q610_30032.html
http://psych.indiana.edu/faculty/osporns.php
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