Towards Automated Coding of Program Comprehension
Gaze Data

Michael Hansen
Indiana University
School of Informatics and
Computing
2719 E. 10th Street
Bloomington, IN 47408 USA

mihansen@indiana.edu

ABSTRACT

Gaze data collected during program comprehension provides
insight into programmers’ thought processes. Manual coding
of this data, however, can be tedious and subjective. We de-
fine and demonstrate an automated coding scheme for most
categories in this workshop’s coding scheme. We discuss
potential sources of error when abstracting from fixations
to areas of interest and patterns, and consider alternative
definitions for some codes. For the high-level Strategy cat-
egory, we inform coding decisions with metrics computed
over a rolling time window.

Categories and Subject Descriptors
H.1.2 [Information Systems|: User/Machine Systems—
software psychology

1. INTRODUCTION

Gaze data collected during program comprehension provides
an insight into programmers’ thought processes that is dif-
ficult to gain using common performance measures [1]. The
process of interpreting and coding this gaze data, however,
is tedious and highly subjective. To aid in the discovery
of strategies for use in programming education, automated
coding can be done with fixation data obtained directly from
the eye-tracker. By building on the abstraction gained from
lower-level automated coding — e.g., from fixations to blocks,
lines, parameter lists, etc. — we demonstrate that codes from
most categories in this workshop’s coding scheme can be au-
tomatically and reasonably assigned.

Automated coding requires precise definitions of each cat-
egory and code. At a low level, this means defining areas
of interest (AOIs) based on syntax or semantics, and then
deciding to which AOI (if any) each fixation belongs. Sec-
tion 2 discusses the details of AOI creation and fixation as-
signment. These details must be explicit because the process

Robert L. Goldstone
Indiana University
Dept. of Psychological and
Brain Sciences
1101 E. 10th Street
Bloomington, IN 47405 USA

rgoldsto@indiana.edu

Andrew Lumsdaine
Indiana University
School of Informatics and
Computing
2719 E. 10th Street
Bloomington, IN 47408 USA

lums@indiana.edu

of quantizing fixations introduces new potential sources of
error. Section 3 defines all automatically-assigned codes in
terms of AOI rectangles or lower-level codes. These defini-
tions fit the authors’ intuitions, but should not be taken as
absolute or final. To aid in the manual assignment of Strat-
egy codes, we make use of several fixation metrics computed
over rolling time windows in each trial (Section 4).

2. QUANTIZING FIXATIONS

Fixations are quantized gaze positions over time. To ab-
stract further, we draw rectangles around areas of interest
(AOIs) and assign each fixation to zero or more AOIs. For
simplicity, we assume the AOI rectangles in the Block, Sub-
Block, Signature, and MethodCall categories do not over-
lap. Codes in these categories, therefore, are mutually ex-
clusive (not the case for Pattern).

this.y2 =y2 ;

Figure 1: Example assignment of a fixation to an
AOI. A circle is drawn around the fixation point,
and the AOI with the largest overlap is assigned.

To determine whether or not a fixation belongs to an AOI,
we do the following: (1) draw a circle around the fixation
point with radius R, and (2) choose the AOI rectangle with
the largest area of overlap (Figure 1). The choice of R de-
pends on the size of the experiment screen and how far away
the participant was sitting. Using R = 20 pixels, Figure 2
shows a timeline for subject 1’s trial where each fixation has
been quantized by line. Particular high-level patterns, such
as Scan (highlighted), become readily apparent with such
plots. Caution must be exercised, however, because noise at
the lowest levels (raw gaze data) may result in a wrong AOI
or code assignment.

3. CODING SCHEME DEFINITIONS

To facilitate automation of the coding process, we must pre-
cisely define each portion of the coding scheme. Even for
very basic codes, such as Body from SubBlock, different rea-
sonable definitions are possible. For example, should a fixa-
tion be coded as Body if it hits an opening curly brace ({)?
For functions defined with K&R style braces, the opening
brace is part of the signature line, and would likely not be
considered part of the body:

— Line

Time —

Figure 2: Timeline of line fixations for subject 1 (en-
tire trial). The automatically identified Pattern:Scan
portion is highlighted (2.034-18.642s).

public Rectangle(int x1, int y1, int x2, int y2) {
// constructor body
}

With more compactly defined functions, such as width(Q),
the separation between body and signature is not as clear:

public int width () { return this.x2 - this.x1 ; }

We suggest the following definitions for SubBlock. The open-
ing brace is counted as part of the signature, whether or not
the function is defined on a single line. To be consistent,
the closing brace (}) is never considered part of the body.
Figure 3 shows areas of interest overlaid on the rectangle
program according to these definitions.

public Rectangle (intx1,inty1,intx2 ,inty2){

this.x1 =x1;
this.y1 =y1;
this.x2 = x2 ;
this.y2 =y2 ;

public int width (){Hreturn this.x2 - this.x1 | }

Figure 3: SubBlock areas of interest for constructor
and width method. Signature and body are consis-
tently separated.

3.1 Signature and MethodCall

Both Signature and MethodCall have Name, Type, and pa-
rameter list codes. For a signature like main’s:
public static void main (Stringl[] args) {

/.
}

we consider public static void to be the type, main to be
the name, and the arguments plus surrounding parentheses
to be the formal parameter list. When coding method calls,
however, we only consider Name and ActualParameterList.

While the type and name of a method call are distinct lin-
guistically (e.g., System.out and println), they are phys-
ically combined as a single “word” (System.out.println).
Unlike signatures as well, the types and names of method
calls are both in the same grammatical category (identi-
fiers), as opposed to being in separate categories (keywords
and identifiers). For these reasons, we do not separate type
from name for MethodCall (Figure 4). Lastly, we do not
code nested calls hierarchically (e.g., foo(bar())) because
it would cause within-category overlap of the AOIs.

Rectangle rect1 = new PectangleH(0,0,10,10)

ﬁystem.out.println‘k rectl.area ())‘:

Rectangle rect2 = new ‘Reclangle‘ ‘(5,5,10,10);

1

Fystem.out.println‘k rect2.area ())‘:

Figure 4: MethodCall areas of interest for main
method. We do not distinguish between Name and

Type.

3.2 Pattern

The most basic pattern, Linear is defined as the subject fol-
lowing at least 3 lines in text order. We follow this definition
with one caveat: blank lines are not taken into account. For
example, fixations on lines 1, 2, then 4 for the rectangle
program are coded as Linear because line 3 is blank.

The JumpControl pattern, while seemingly simple, hides a
great deal of complexity. Whether or not a transition be-
tween two lines follows execution order depends on where
the subject is in evaluating the program! For example, a
transition between line 11 (width() definition) and line 15
(area() definition) follows execution order only if the sub-
ject is currently evaluating the call to this.width() in the
body of area(). For now, we code any line transition that
could follow execution order as JumpControl. Future defini-
tions of this code should take previous fixations into account
in order to guess where the subject is in the call stack.

LineScan is defined in English as the subject reading the
whole line in “rather equally distributed time.” For simplic-
ity, we operationalize this definition by splitting each line
into a set of equally-sized rectangles (Figure 5). A LineS-
can is coded for any set of consecutive fixations that hit at
least 3 distinct rectangles on a single line. While this does
not explicitly address the “equally distributed time” portion
of the English definition, it assigns codes that match the au-
thors’ intuitions for the sample data. Another option would
be to use the rolling metrics discussed in Section 4 — e.g.,
fixation spatial density and duration.

Building on LineScan, we can simply define Signatures as
a line scan of a signature line (SubBlock:Signature) im-
mediately followed by a fixation inside the corresponding
function/constructor body (SubBlock:Body). With this def-
inition, we identify two instances of the pattern in subject
2’s trial (width starting at 7 seconds and the constructor
starting around 26 seconds).

The Scan pattern, inspired by results from Uwano et al. [4],
can be operationalized using two sets of constraints. A Scan

starts the first time a fixation moves down the screen rel-
ative to the previous fixation, and stops when one of two
conditions is met: either (1) more than 3 fixations move up
the screen, or (2) more than 1.5 seconds are spent on the
same line. The highlighted portion of Figure 2 has been
identified using this definition, and matches well with the
authors’ intuitions.

i e - AR

Figure 5: A single line split into equally-sized rect-
angles. We code a LineScan if 3 or more distinct
rectangles are fixated consecutively.

4. STRATEGIES & ROLLING METRICS

Codes from the categories described above can be assigned
based (mostly) on observation. The Strategy category of
codes, however, requires more interpretation. To aid in the
identification and interpretation of strategies, we compute
three fixation metrics over the course of each trial using
a rolling window. Windows are 4 seconds in size and are
shifted by 1 second during each step. On average, a single
time window will contain about a dozen fixations.

Our first two metrics are simply fixation count and mean
fixation duration [3]. Respectively, they are the total num-
ber of fixations in a time window and the mean duration
of those fixations. Our third metric, fixation spatial den-
sity [2], is computed as follows: (1) divide the screen into
a grid, and (2) calculate the proportion of cells in the grid
which contain at least one fixation. We divide the portion
of the screen containing code vertically into 10 equally-sized
rectangles. A spatial density of 1, therefore, means that all
10 rectangles were fixated at least once in a time window.

Figure 6 shows our three rolling metrics computed for sub-
ject 1’s trial (time windows with no fixations were dropped).
Troughs in spatial density (solid blue line) correspond to
windows in which subject 1 was concentrating on one or two
lines. In some cases, this was correlated with an increase in
fixation count (dashed green line), which may be useful for
distinguishing between the Debugging and TestHypothesis
strategies. The sharp increase in mean fixation duration
just after the 70 second mark (dashed-dotted red line) cor-
responds with the subject focusing on the final line of the
program:

System.out.println(rect2.area ());

The subject’s task in this trial is to obtain the value of
rect2.area(). Given the increased fixation duration and
drop in both fixation count and spatial density at this point
(at approximately 65-75 seconds), we hypothesize that the
subject is performing the necessary mental calculation to
compute the area of rect2. There are several off-screen fix-
ations at 70-75 seconds in the video, supporting this hypoth-
esis. While we may not be able to pinpoint shifts in strategy
using this kind of visualization, we can quickly identify in-
teresting time windows to investigate further.

— Density

- Count - Duration

Figure 6: Rolling fixation metrics for subject 1 (en-
tire trial) with a window size of 4 seconds and a step
size of 1 second.

S. CONCLUSION & FUTURE WORK

We have defined and demonstrated an automated process for
coding non-Strategy categories from the workshop’s coding
scheme. In most cases, this process assigns codes that match
well with the authors’ intuitions. In the context of pro-
gramming education, automated coding helps researchers
quantify differences between experienced and novice pro-
grammers. Such differences could inform the design of an
automated tutor capable of providing highly-contextualized
feedback to a student. For example, alternative strategies
could be presented to students who fail to locate a bug in
an exercise.

Automated coding also forces the coder to think precisely
about areas of interest and how to define high-level codes,
increasing confidence in subsequent analyses. Because the
process is automated, it can be run with different, compet-
ing code definitions. Multiple quantitative cognitive mod-
els could also be used to inform coding (e.g., JumpControl),
with deviations from expectations helping to refine the mod-
els.

For future work, we would like to achieve automated cod-
ing of the Strategy category in a way that agrees with hu-
man coders. This may not be possible without more precise
definitions of Debugging, DesignAtOnce, etc. Previous psy-
chology of programming research, combined with focused
eye-tracking studies where only one strategy is likely to be
used, will be crucial to achieving this goal.

6. ACKNOWLEDGMENTS

We would like to thank the workshop organizers for their
efforts in constructing the coding scheme and providing the
gaze data. All software will be made available online af-
ter the workshop. Grant R305A1100060 from the Institute
of Education Sciences Department of Education and grant
0910218 from the National Science Foundation REESE sup-
ported this research.

7.
1]

2]

[3

REFERENCES
R. Bednarik, N. Myller, E. Sutinen, and M. Tukiainen.
Program visualization: Comparing eye-tracking
patterns with comprehension summaries and
performance. In Proceedings of the 18th Annual
Psychology of Programming Workshop, pages 66—82,
2006.
L. Cowen, L. J. Ball, and J. Delin. An eye movement
analysis of web page usability. In People and
Computers XVI-Memorable Yet Invisible, pages
317-335. Springer, 2002.
A. Poole and L. J. Ball. Eye tracking in
human-computer interaction and usability research:
Current status and future. In Prospects, Chapter in C.
Ghaoui (Ed.): Encyclopedia of Human-Computer
Interaction. Pennsylvania: Idea Group, Inc, 2005.
H. Uwano, M. Nakamura, A. Monden, and K.-i.
Matsumoto. Analyzing individual performance of
source code review using reviewers’ eye movement. In
Proceedings of the 2006 symposium on Eye tracking
research & applications, pages 133-140. ACM, 2006.

