
Mr. Bits: A Quantitative Process Model of Simple Program

Understanding &

Nibbles: A Constraint-Based Model of Program Reading and

Inference

Michael Hansen (mihansen@indiana.edu)
School of Informatics and Computing, 2719 E. 10th Street

Bloomington, IN 47408 USA

Andrew Lumsdaine (lums@indiana.edu)
School of Informatics and Computing, 2719 E. 10th Street

Bloomington, IN 47408 USA

Robert L. Goldstone (rgoldsto@indiana.edu)
Dept. of Psychological and Brain Sciences, 1101 E. 10th Street

Bloomington, IN 47405 USA

May 3, 2015

1

Abstract

2

1 Introduction

1.1 The Complexity of a Program

What makes some code hard to understand? Intuitively, we might expect the difficulty of the underlying
problem the program is attempting to solve to be a major factor. A program designed to simulate the physics
of an automobile is likely more complex than one that simply computes the average of a set of numbers.
The latter program is also bound to be shorter and use fewer operations than the former [39]. However,
short and simple-looking programs can be hard to understand, even for experienced programmers, when
certain notational and conceptual expectations are violated [34]. Therefore, the cognitive complexity of a
program – e.g., how hard it is to understand – is determined by computational, notational, and psychological
factors [6]. To fully understand and predict this kind of complexity, we must create cognitive models of
programmers that are capable of reasoning about source code and representing programs in a human-like
manner. These models could be used to locate unmaintainable code in large codebases, inform design
decisions for programming languages, and aid in the automated generation of programs for humans.
Additionally, quantitatively modeling such a complex, real world task pushes the frontiers of Cognitive
Science by combining existing models of representation, working memory, planning, and problem solving.

In this paper, we present two cognitive models, called Mr. Bits and Nibbles. Mr. Bits is designed to
predict the eye movements and keystroke response times of a programmer who is tasked with reading short
Python programs and guessing their printed output. The model is built on top of the ACT-R cognitive
architecture, a computational simulation of the major components of human cognition and perception such
as declarative/procedural knowledge, vision, and hearing. Additionally, it is intended to operationalize
aspects of the Cognitive Complexity Metric [6] – a source code metric designed to measure how difficult a
program is to trace through and mentally chunk. A major limitation of the Mr. Bits model, however, is that it
cannot make errors. Therefore, we explore an alternative formalism to ACT-R, and present a second model
called Nibbles. Unlike Mr. Bits, Nibbles generates multiple possible interpretations of a program’s code,
line-by-line, and selects a single (possibly incorrect) interpretation to incorporate into its running “mental
model”. We evaluate Mr. Bits by comparing its timing performance to 29 human programmers, each tested
on 10 out of a set of 25 short Python programs. For Nibbles’ evaluation, we focus on 3 of these programs,
and show how the errors observed in our human programmers can be generated by Nibbles.

1.2 The Psychology of Programming

Psychologists have been studying programmers for at least forty years. Early research focused on correlations
between task performance and human/language factors, such as how the presence of code comments
impacts scores on a program comprehension questionnaire. More recent research has revolved around
the cognitive processes underlying program comprehension. Effects of expertise, task, and available tools
on program understanding have been found [9]. Studies with experienced programmers have revealed
conventions, or “rules of discourse,” that can have a profound impact (sometimes negative) on expert
program comprehension [34].

The qualitative side of program comprehension modeling today is filled with “box and arrow” dia-
grams [9]. These models incorporate research from many aspects of cognitive science: psychology, linguistics,

3

computer science, and even neuroscience [24]. They are helpful for making sense of the myriad of results
from controlled studies of programmers over the last four decades. Qualitative cognitive models can help
emphasize which aspects of cognition are most important for program comprehension, such as language
and problem solving skills [32]. Unfortunately, their predictive power is limited. The Stores Model of Code
Cognition, for example, emphasizes the importance of the central executive and its relationship to strategic,
semantic, and plan knowledge in code problem solving [10]. But, as with source code metrics, predicting
whether or not a particular programmer will successfully comprehend a specific program is not possible with
the model. A quantitative model is needed which formalizes aspects of existing qualitative models to emulate
the process of reading, interpreting, and understanding a program. We develop and evaluate quantitative
cognitive models of program comprehension built using two different formalisms: the ACT-R cognitive
architecture [2], and Cognitive Domain Ontologies [12].

1.3 Why Model a Programmer?

The design, creation and interpretation of computer programs are some of the most cognitively challenging
tasks that humans perform. Understanding the factors that impact the cognitive complexity of code is
important for both applied and theoretical reasoning. Practically, an enormous amount of time is spent
developing programs, and even more time is spent debugging them, and so if we can identify factors that
expedite these activities, a large amount of time and money can be saved. Theoretically, programming is
an excellent task for studying representation, working memory, planning, and problem solving in the real
world.

• Inform language and API design
• Automated program generation
• Expand cognitive modeling into more complex tasks

Our present research focuses on programs much less complicated than those the average professional
programmer typically encounters on a daily basis. The demands of our task are still high, however, because
participants must predict precise program output. In this way, it is similar to debugging a short snippet of a
larger program. Code studies often take the form of a code review, where programmers must locate errors or
answer comprehension questions after the fact (e.g., does the program define a Professor class? [4]). Our task
differs by asking programmers to mentally simulate code without necessarily understanding its purpose. In
most programs, we intentionally use meaningless identifier names where appropriate (variables a, b, etc.) to
avoid influencing the programmer’s mental model.

Similar research has asked beginning (CS1) programming students to read and write code with simple
goals, such as the Rainfall Problem [16]. To solve it, students must write a program that averages a list of
numbers (rainfall amounts), where the list is terminated with a specific value – e.g., a negative number or
999999. CS1 students perform poorly on the Rainfall Problem across institutions around the world, inspiring
researchers to seek better teaching methods. Our work includes many Python novices with a year or less of
experience, so our results may contribute to ongoing research in early programming education.

• Develop a realizable theory of program understanding (evaluate formalisms)
• Quantitatively model output prediction task

4

• Predict task performance (timings, error rates, etc.) and kinds of errors

5

2 Background

Psychologists have been studying the behavioral aspects of programming for at least forty years [7]. In
her book Software Design - Cognitive Aspects, Françoise Détienne proposed that psychological research on
programming can be broken into two distinct periods [9]. The first period, spanning the 1960’s and 1970’s, is
characterized by the importing of basic experimental techniques and theories from psychology into computer
science. Early experiments looked for correlations between task performance and language/human factors –
e.g., the presence or absence of language features, years of experience, and answers to code comprehension
questionnaires. While this period marked the beginning of scientific inquiry into software usability from a
programming perspective, results were limited in scope and often contradictory.

The problem is simple: if task performance depends heavily on internal cognitive processes, then it cannot
be measured independent of the programmer. Early psychology of programming studies relied exclusively
on statistical correlations between metrics like “presence of comments” and “number of defects detected,”
so researchers were unable to explain some puzzling results. For example, multiple studies in the 1970’s
sought to measure the effect of meaningful variable names on code understandability. Two studies found no
effect [38, 31] while a third study found positive effects as programs became more complex [30]. Almost a
decade later, Soloway and Ehrlich provided an explanation for these findings: experienced programmers
are able to recognize code schemas or programming plans [34]. Programming plans are “program fragments
that represent stereotypic action sequences in programming,” and expert programmers can use them to
infer intent in lieu of meaningful variable names. This and many other effects depend on internal cognitive
processes, and therefore require a cognitive modeling approach to explain.

2.1 The eyeCode Experiment

Brief description of eyeCode

2.2 The Cognitive Complexity Metric

Developed in the mid-nineties, Cant et al.’s cognitive complexity metric (CCM) attempts to quantify the
cognitive processes involved in program development, modification, and debugging [6]. The CCM focuses
on the processes of chunking (understanding a block of code) and tracing (locating dependencies). Cant et
al. provide mathematical definitions for factors that are believed to influence each process. Some of the
factors in the CCM are quantified by drawing upon the existing literature, but many definitions are simply
placeholders for future empirical studies.

2.2.1 Chunking and Tracing

The cognitive processes of chunking and tracing play key roles in the cognitive complexity metric (CCM).
Chunking is defined as the process of recognizing groups of code statements (not necessarily sequential),
and recording the information extracted from them as a single mental symbol or abstraction. In practice,
programmers rarely read through and chunk every statement in a program. Instead, they trace forwards or
backwards in order to find relevant chunks for the task at hand [6]. Cant et al. define a chunk as a block of

6

statements that must occur together (e.g., loop + conditional).1 This definition, however, is intended only for
when the programmer is reading code in a normal forward manner. When tracing backwards or forwards, a
chunk is defined as the single statement involving a procedure or variable’s definition.

2.2.2 Chunk Complexity (C)

To compute the complexity Ci of chunk i, Cant et al. define the following equation:

Ci = Ri + ∑
j∈N

Cj + ∑
j∈N

Tj

where Ri is the complexity of the immediate chunk i, Cj is the complexity of sub-chunk j, and Tj is the
difficulty in tracing dependency j of chunk i. The definitions of R and T are given as follows:

R = RF(RS + RC + RE + RR + RV + RD)

T = TF(TL + TA + TS + TC)

Each right-hand side term stands for a particular factor that is thought to influence the chunking or
tracing processes (Figure 1). The underlying equations for each factor can be found in [6], but are not needed
for the discussion below.

2.2.3 Immediate Chunk Complexity (R)

The chunk complexity R is made up of six additive terms (RS, RC, RE, RR, RV , RD) and one multiplicative
term RF. These represent factors that influence how hard it is to understand a given chunk.2

RF (chunk familiarity) This term captures the increased speed with which a programmer is able to
understand a given chunk after repeated readings. In ACT-R, the subsymbolic layer of the declarative
memory module would handle this, as repeated retrievals of the same ACT-R chunk will increase its retrieval
speed. Declarative chunks are not stored independently, however, so the activation of similar chunks will
potentially cause interference. This means that increased familiarity with one chunk will come at the cost of
slower retrieval times for similar chunks. Production compilation could also underly familiarity. Once a
compiled production’s utility exceeds that of its parents, it will be fired instead and result in speed gains.

RS (size of a chunk) This term captures two notions of a chunk’s “size”: (1) its structural size (e.g., lines of
code) and (2) the “psychological complexity of identifying a chunk where a long contiguous section of non-branching
code must be divided up in order to be understood.” In other words, RS should be effected by some notion of
short-term memory constraints. An ACT-R model would be influenced by a chunk’s structural size simply
because there would be more code for the visual module to attend to and encode (i.e., more sequential
productions fired). The additional “psychological complexity” could be modeled in several ways. ACT-R

1When operationalizing the definition of a chunk, Cant et al. admit that “it is difficult to determine exactly what constitutes a chunk since
it is a product of the programmer’s semantic knowledge, as developed through experience.”

2More general forms for R and T are discussed in [6], but Cant et al. suggest starting with simple additive representations.

7

does not contain a distinct short-term memory component, relying on long-term memory to serve as a short-
term and working memory. According to Niels Taatgen, however, the decay and interference mechanisms
present in ACT-R’s subsymbolic layer can produce the appearance of short-term memory constraints [36].

RC (control structures) The type of control structure in which a chunk is embedded influences R because
conditional control structures like if statements and loops require the programmer to comprehend additional
boolean expressions. In some cases, this might involve mentally iterating through a loop. We expect that
boolean expressions would be comprehended in much the same way as for the RE factor (see below).
Modeling the programmer’s mental iteration through a loop could draw on existing ACT-R models for
inspiration. For example, a model of children learning addition facts (e.g., 1 + 5 = 6) might “calculate”
the answer to 5 + 3 by mentally counting up from 5.3 After many repetitions, the pattern 5 + 3 = 8 is
retrieved directly from memory, avoiding this slow counting process. Likewise, an ACT-R model of program
comprehension could start out by mentally iterating over loops, and eventually gain the ability to recognize
common patterns in fewer steps.

RE (boolean expressions) Boolean expressions are fundamental to the understanding of most programs,
since they are used in conditional statements and loops. According to Cant et al., the complexity of boolean
expressions depends heavily on their form and the degree to which they are nested. To incorporate boolean
expressions into an ACT-R model, it would be helpful to record eye-gaze patterns from programmers
answering questions based on boolean expressions. A data set with these patterns, response times, and
answers to the questions could provide valuable insight into how programmers of different experience
levels evaluate boolean expressions. For example, it may be the case that experienced programmers use
visual cues to perform pre-processing at the perceptual level (i.e., they saccade over irrelevant parts of the
expression). The data may also reveal that experienced programmers read the expression, but make efficient
use of conceptual-level shortcuts (e.g., FALSE AND ... = FALSE). These two possibilities would result in
very different ACT-R models, the former making heavy use of the visual module, and the latter depending
more on declarative memory.

RR (recognizability) Empirical studies have shown that the syntactic form of a program can have a strong
effect on how a programmer mentally abstracts during comprehension [15]. An ACT-R model would show
such an effect if its representation of the program was built-up over time via perceptual processes. In other
words, the model would need to observe actual code rather than receiving a pre-processed version of the
program as input (e.g., an abstract syntax tree). Ideally, the ACT-R model would make errors like real
programmers do when the code violates Soloway’s unwritten rules of discourse (e.g., the same variable
is used for multiple purposes) [34]. ACT-R has the ability to partially match chunks in memory by using
a model-specific similarity metric. This ability would be useful for modeling recognizability, since slight
changes in code indentation and layout should not confuse the model entirely.

RV (visual structure) This term represents the effects of visual structure on a chunk’s complexity, and
essentially captures how visual boundaries influence chunk identification. While Cant et al. only describe

3The model would likely use the subvocalize feature of ACT-R’s vocal module to simulate the child’s inner voice.

8

three kinds of chunk delineations (function, control structure, and no boundary), more general notions
of textual beacons and boundaries have been shown to be important in code [41]. For example, Détienne
found that advance organizers (e.g., a function’s name and leading comments) had a measurable effect on
programmers’ expectations of the code that followed [8]. Biggerstaff et al. have also designed a system for
automatic domain concept recognition in code [3]. This system considers whitespace to be meaningful, and
uses it to bracket groups of related statements. As with the recognizability term (RR), it would be crucial for
an ACT-R model to observe real code instead of an abstract syntax tree. ACT-R’s visual module is able to
report the xy coordinates of text on the screen, so it would be simple to define a notion of whitespace in the
model.

RD (dependency disruptions) There are many disruptions in chunking caused by the need to resolve
dependencies. This applies both to remote dependencies (e.g., variable definitions), and to local dependencies
(e.g., nested loops and decision structures). Cant et al. cite the small capacity of short-term memory as
the main reason for these disruptions. As mentioned earlier, ACT-R does not have a distinct “short-term
memory” module with a fixed capacity. Instead, short-term capacity limits are an emergent property of
memory decay and interference. Given the biological plausibility of ACT-R’s architecture, we should expect
to find empirically that RD effects in humans are actually context-dependent. In other words, the number
of disruptions that a programmer can handle without issue should depend on the situation. This is a case
where the psychological theory underlying the cognitive architecture can help to suggest new experiments
on humans.

2.2.4 Tracing Difficulty (T)

Most code does not stand alone. There are often dependencies that the programmer must resolve before
chunking the code in memory and ultimately understanding what it does. The Cognitive Complexity Metric
(CCM) operationalizes the difficulty in tracing a dependency as T = TF(TL + TA + TS + TC). For these six
terms, the definition of a chunk is slightly different. Rather than being a block of statements that must
co-occur, a chunk during tracing is defined as a single statement involving a procedure’s name or a variable
definition.

TF (familiarity) The dependency familiarity has a similar purpose to the chunk familiarity (RF). As with
RF, ACT-R’s subsymbolic layer will facilitate a familiarization effect where repeated requests for the same
dependency information from declarative memory will take less time. The effect of the available tools in
the environment, however, will also be important. An often-used dependency (e.g., function definition)
may be opened up in a new tab or bookmarked within the programmer’s development environment. A
comprehensive ACT-R model will need to interact with the same tools as a human programmer to produce
“real world” familiarization effects.

TL (localization) This term represents the degree to which a dependency may be resolved locally. Cant
et al. proposed three levels of localization: embedded, local, and remote. An embedded dependency is
resolvable within the same chunk. A local dependency is within modular boundaries (e.g., within the
same function), while a remote dependency is outside modular boundaries. This classification would fit

9

an ACT-R model that tries to resolve dependencies by first shifting visual attention to statements within
the current chunk (embedded), switching then to a within-module search (local), and finally resorting to a
extra-modular search (remote) if the dependency cannot be resolved. It is not clear, however, what the model
should consider a “module,” especially when using a modern object-oriented language and development
environment. It might be more useful to derive a definition of “module” empirically instead. An ACT-R
model in which the effects of dependency localization were emergent from visual/tool search strategies
could be used to define the term (i.e., how the language and tools make some chunks feel “closer” than
others).

TA (ambiguity) Dependency ambiguity occurs when there are multiple chunks that depend upon, or
are effected by, the current chunk. The CCM considers ambiguity to be binary, so a dependency is either
ambiguous or not. Whether ambiguity increases the complexity of a chunk is also dependent on the current
goal, since some dependencies do not always need to be resolved (e.g., unused parameters can be ignored).
We expect an ambiguity effect to emerge naturally from an ACT-R model because of partial matching and
memory chunk similarity. If the model has previously chunked two definitions of the variable x, for example,
then a future query (by variable name) for information about this dependency may result in a longer retrieval
time or the wrong chunk entirely.

TS (spatial distance) The distance between the current chunk and its dependent chunk will affect the
difficulty in tracing. Lines of code are used in the CCM as a way of measuring distance, though this seems
less relevant with modern development environments. Developers today may have multiple files open at
once, and can jump to variable/function definitions with a single keystroke. The “distance” between two
chunks in an ACT-R model may be appropriately modeled as how much time is spent deciding how to locate
the desired chunk (e.g., keyboard shortcut, mouse commands, keyword search), making the appropriate
motor movements to interact with the development environment, and visually searching until the relevant
code has been identified. This more complex version of TS would depend on many things, including the state
of the development environment (e.g., which files are already open), and the programmer’s familiarization
with the codebase.

TC (level of cueing) This binary term represents whether or not a reference is considered “obscure.”
References that are embedded within large blocks of text are considered obscure, since the surrounding
text may need to be inspected and mentally broken apart. This term appears to be related to the effect of
visual structure on a chunk’s complexity (RV). Clear boundaries between chunks (e.g., whitespace, headers)
play a large role in RV , and we expect them to play a similar role in TC. Tracing is presumed to involve a
more cursory scan of the code than chunking, however. An ACT-R model may need to be less sensitive to
whitespace differences during tracing than during chunking.

2.3 The ACT-R Cognitive Architecture

ACT-R is “a cognitive architecture: a theory about how human cognition works.” [1] It is a domain-specific
programming language built on top of LISP, and a simulation framework for cognitive models. There are
eight modules in ACT-R, which represent major components of human cognition (Figure 2). Modules exist at

10

Term Description
RF Speed of recall or review (familiarity)
RS Chunk size
RC Type of control structure in which

chunk is embedded
RE Difficulty of understanding complex

Boolean or other expressions
RR Recognizability of chunk
RV Effects of visual structure
RD Disruptions caused by dependencies
TF Dependency familiarity
TL Localization
TA Ambiguity
TS Spatial distance
TC Level of cueing

Figure 1: Important factors in the Cognitive Complexity Metric. Rx terms affect chunk complexity. Tx terms affect tracing
difficulty.

two layers: (1) the symbolic layer, which provides a simple programmatic interface for models, and (2) the
subsymbolic layer, which hides real-world details like how long it takes to retrieve an item from declarative
memory. ACT-R models formalize humans performance on tasks using production rules that send and
receive messages between modules. Models are simulated and observed along psychologically relevant
dimensions like task accuracy, response times, and simulated BOLD.4 measures (i.e., fMRI brain activations)
These simulations are reproducible, and can provide precise predictions about human behavior. We discuss
the pieces of ACT-R in detail below, and provide examples of its success in other domains.

2.3.1 Buffers, Chunks, and Productions

The ACT-R architecture is divided into eight modules, each of which has been associated with a particular
brain region (see [2] for more details). Every module has its own buffer, which may contain a single chunk.
Buffers also serve as the interface to a module, and can be queried for the module’s state. Chunks are the
means by which ACT-R modules encode messages and store information internally. They are essentially
collections of name/value pairs (called slots), and may inherit their structure from a parent chunk type.
Individual chunk instances can be extended in advanced models, but simple modules tend to have chunks
with a fixed set of slots (e.g., two addends and a result for a simple model of addition). Modules compute
and communicate via productions, rules that pattern-match on the slot values of a chunk or the state of
a buffer. When a production matches the current system state (i.e., all chunks in all module buffers), it
“fires” a response. Responses include actions like inserting a newly constructed chunk into a buffer and
modifying/removing a buffer’s existing chunk.5

When it is possible, computations within a module are done in parallel. Exceptions include the serial
fetching of a single memory from the declarative module, and the visual module’s restriction to only focus
on one item at a time. Communication between modules is done serially via the procedural module (see

4Blood-oxygen-level-dependent contrast. This is the change in blood-flow for a given brain region over time.
5Chunks that are removed from a buffer are automatically stored in the declarative memory module.

11

Module Purpose
Procedural Stores and matches production rules, facilitates inter-module

communication
Goal Holds a chunk representing the model’s current goal
Declarative Stores and retrieves declarative memory chunks
Imaginal Holds a chunk representing the current problem state
Visual Observes and encodes visual stimuli (color, position, etc.)
Manual Outputs manual actions like key-presses and mouse move-

ments
Vocal Converts text strings to speech and performs subvocalization
Aural Observes and encodes aural stimuli (pitch, location, etc.)

Figure 2: ACT-R 6.0 modules. Communication between module buffers is done via the procedural module.

Figure 2). Only one production may fire at any given time6, making the procedural model the central
bottleneck of the system.

The visual, aural, vocal, and manual modules are capable of communicating with the environment. In
ACT-R, this environment is often simulated for performance and consistency. Experiments in ACT-R can be
written to support both human and model input, allowing for a tight feedback loop between adjustments
to the experiment and adjustments to the model. The goal and imaginal modules are used to maintain the
model’s current goal and problem state, respectively.

2.3.2 The Subsymbolic Layer

Productions, chunks, and buffers exist at the symbolic layer in ACT-R. The ability for ACT-R to simulate
human performance on cognitive tasks, however, comes largely from the subsymbolic layer. A symbolic action,
such as retrieving a chunk from declarative memory, does not return immediately. Instead, the declarative
module performs calculations to determine how long the retrieval will take (in simulated time), and the
probability of an error occurring. The equations for subsymbolic calculations in ACT-R’s modules come
from existing psychological models of learning, memory, problem solving, perception, and attention [1].
Thus, there are many constraints on models when fitting parameters to human data.

In addition to calculating timing delays and error probabilities, the subsymbolic layer of ACT-R contains

6This is a point of contention in the literature. Other cognitive architectures, such as EPIC [20] allow more than one production to
fire at a time.

12

mechanisms for learning. Productions can be given utility values, which are used to break ties during
the matching process.7 Utility values can be learned by having ACT-R propagate rewards backwards in
time to previously fired productions. Lastly, new productions can be automatically compiled from existing
productions (representing the learning of new rules). Production compilation could occur, for example, if
production P1 retrieves stimulus-response pairs from declarative memory and production P2 presses a key
based on the response. If P1 and P2 co-occur often, the compiled P1,2 production would go directly from
stimulus to key press, saving a trip to memory. If P1,2 is used enough, it will eventually replace the original
productions and decrease the model’s average response time.

2.3.3 Successful ACT-R Models

Over the course of its multi-decade lifespan, there have been many successful ACT-R models in a variety of
domains (success here means that the models fit experimental data well, and were also considered plausible
explanations). We provide a handful of examples below (more are available on the ACT-R website [1]).

David Salvucci (2001) used a multi-tasking ACT-R model to predict how different in-car cellphone dialing
interfaces would affect drivers [28]. This integrated model was a combination of two more specific models:
one of a human driver and another of the dialing task. By interleaving the production rules of the two
specific models8, the integrated model was able to switch between tasks. Salvucci’s model successfully
predicted drivers’ dialing times and lateral deviation from their intended lane.

Brian Ehret (2002) developed an ACT-R model of location learning in a graphical user interface [13]. This
model gives an account of the underlying mechanisms of location learning theory, and accurately captures
trends in human eye-gaze and task performance data. Thanks to ACT-R’s perception/motor modules,
Ehret’s model was able to interact with the same software as the users in his experiments.

Lastly, an ACT-R model created by Taatgen and Anderson (2004) provided an explanation for why
children produce a U-shaped learning curve for irregular verbs [37]. Over the course of early language
learning, children often start with the correct usage (I went), over-generalize the past-tense rule (I goed),
and then return to the correct usage (I went). Taatgen and Anderson’s model proposed that this U-shaped
curve results from cognitive trade-offs between irregular and regular (rule-based) word forms. Retrieval
of an irregular form is more efficient if its use frequency is high enough to make it available in memory.
Phonetically post-processing a regular-form word according to a rule is much slower, but always produces
something. Model simulations quantified how these trade-offs favor regular over irregular forms for a brief
time during the learning process.

The success of these non-trivial models in their respective domains gives us confidence that ACT-R is
mature enough for modeling program comprehension. In the next section, we discuss how ACT-R might
serve as a base for an existing quantitative cognitive model of code complexity.

7This is especially useful when productions match chunks based on similarity instead of equality, since there are likely to be many
different matches.

8Salvucci notes that this required hand-editing the models’ production rules since ACT-R does not provide a general mechanism for
combining models. See [29] for a more advanced model of multi-tasking in ACT-R.

13

Term Definition
chunk representation for declarative

knowledge
production representation for procedural

knowledge
module major components of the

ACT-R system
buffer interface between modules

and procedural memory sys-
tem

symbolic layer high-level production system,
pattern-matcher

subsymbolic layer underlying equations govern-
ing symbolic processes

utility relative cost/benefit of pro-
ductions

production compilation procedural learning, combine
existing productions

similarity relatedness of chunks

Figure 3: ACT-R terminology

2.4 Cognitive Domain Ontologies

A Cognitive Domain Ontology (CDO) is a formal representation of domain knowledge based on System
Entity Structure (SES) theory [12]. SES theory is a formal specification framework for describing system
aspects and properties [43]. For decades, researchers have used SES theory to automate the exploration
of design space alternatives by enumerating the set of all possible system configurations, pruning them
according to domain constraints, and then simulating/evaluating each pruned system. CDOs are a theoretical
extension to SES in which “system configurations” capture spaces of behavior or situational knowledge. An
agent uses a CDO to explore alternative courses of action, or evidence interpretations, based on a domain’s
structure, a-priori constraints, and situational factors. Psychologically, CDOs represent mental models and can
produce the same underlying reasoning processes of abduction, deduction, and induction [18].

CDOs are formally represented as trees with entities as nodes, and one of three relations as edges (see next
section for details). The pruning process for a CDO is cast as a constraint satisfaction problem (CSP), and is
computationally realized using two extensions to Common LISP [35]. The Screamer [33] and Screamer+ [40]
LISP extensions allow for non-deterministic execution of code by adding two special forms. The either

form takes any number of LISP expressions, and establishes a choice point. The value of the first expression
is returned, and control flow proceeds as normal until a fail form is reached. On each fail, Screamer
backtracks to the nearest either, returning the value of its next expression. Once values are exhausted,
evaluation jumps to the next nearest either or terminates. Listing 1 provides a LISP code example with
all-values, a Screamer form that establishes a non-deterministic context and returns a list of all generated
values. Screamer+ extends Screamer to allow for more complex data types in either, such as Common Lisp
Object System (CLOS) objects [19].

14

> (all-values

(let ((x (either ’a ’b ’c))

(y (either 1 2 3)))

;; Exclude (B 2)

(if (and (eq x ’b) (eq y 2))

(fail))

(list x y)))

;; ((A 1) (A 2) (A 3) (B 1) (B 3) (C 1) (C 2) (C 3))

Listing 1: Example LISP code with Screamer extensions. The either and fail forms are used to generate values.

2.4.1 Entities, Relations, and Constraints

A CDO consists of a set of entities, relations between entities, and constraints. Entities may also have one
or more attached variables, which can store values like integers and strings, and may be used in constraints.
Every CDO has a top-level, or root, entity and alternating levels of relations and child entities, forming a
tree with entities at the leaves (see Figures 4 and 5). Each entity in the tree has a unique name and its own
collection of attached variables. In a given solution from the domain, an entity may be active or inactive
depending on the active state of its parent and the type of relation between them. The root entity is always
active.

There are three types of relations between entities: sub-parts, choice-point, and instance set. A sub-parts
relation, visually represented as an and, is a conjunction of its children. When the parent entity of a sub-parts
relation is active, its child entities will necessarily be active. Sub-parts are used to represent required structure
in a domain, such as the cost and performance characteristics of a computer component (the Details relation
in Figure 5).

A choice-point relation, visually represented as an xor, is a disjunction of its children, with only one
child being active at a time in a solution. Choice points are the source of generativity in CDOs, with all
combinations of active/inactive choice point children forming the structure of the complete, unconstrained
solution space. Because each choice under a choice point may have sub-structure, it is possible for different
solutions from the same CDO to significantly differ in their tree structure.

Lastly, the instances set relation, visually represented as a 0..n, creates n copies of its sub-structure in
each solution. Like sub-parts, an instance set’s child entities are active when its parent is active. Increasing n,
the cardinality of the instance set, can exponentially expand the size of the solution space because all child
choice points (and nested instance sets) are independent of each other. Constraints can be mapped across all
child entities of an instance set, or may target specific instances by ordinal (ord).

Constraints. In addition to the structure of a domain, CDOs contain constraints that serve to prune out
non-sensical or irrelevant sections of the solution space. The basic CDO constraint language (Table 1) is
based on first-order logic with some additional operators for accessing and comparing entities and variables.
Constraints typically set or key off of choice points, shutting down generativity in the Screamer constraint
solver. In domains with instance sets, higher-order constraints can be mapped across instances (setting

15

instance variable values), or used to constrain the set (e.g., at most one instance with choice A). Section 2.4.3
provides details on the higher-order constraint operators.

Operator Description Example
==> Implication (If) (==> p q)

<==> Biconditional (IFF) (<==> p q)

not Negation (Not) (not p)

or Disjunction (Or) (or p q)

and Conjunction (And) (and p q)

e@ Entity in CDO (e@ e1 e2)

v@ Variable in CDO entity (v@ (e1 e2) v1)

equale Entity equality (equale e1 e2)

equalv Variable equality (equalv v1 v2)

let Local binding (let ((p p’)) (equale p p’))

Table 1: First order CDO constraint language.

2.4.2 Ball Example

Figure 4: The ball CDO. A ball has a size and associated sport.

Figure 4 shows a simple example domain. In this domain, a ball is broken down into two components:
a size and a sport. Both components are choice points with three options, making for a total of 9 possible
solutions. With no constraints, the solution space consists of all combinations of size and sport (Table 2).

This solution space is not very useful, however, as it contains many nonsensical solutions. Golf, baseball,
and basketballs should be small, medium, and large respectively. Three simple constraints will serve to
constrain our domain:

1. Small ⇐⇒ Gol f
2. Medium ⇐⇒ Baseball
3. Large ⇐⇒ Basketball

Note that all three constraints are bidirectional. A unidirectional constraint, such as Small ⇒ Gol f
would allow for more solutions, including medium and large golf balls. With these new constraints in place,
our solution space size is reduced from 9 to 3 (Table 3).

16

Solution Size Sport
1 Small Baseball
2 Small Golf
3 Small Basketball
4 Medium Baseball
5 Medium Golf
6 Medium Basketball
7 Large Baseball
8 Large Golf
9 Large Basketball

Table 2: Unconstrained solution space of the ball CDO.

Solution Size Sport
1 Small Golf
2 Medium Baseball
3 Large Basketball

Table 3: Constrained solution space of the ball CDO with all constraints.

Translated into the Common LISP CDO framework, the top-level Ball entity becomes a ball function
which takes a set of constraints as parameters. Each entity underneath Ball is accessible as a variable that can
be referenced in constraints. The solutions function explores the solution space defined by the top-level
entity and constraints, and enumerates :all solutions or :one solution.

> (solutions

(ball

(<==> small golf)

(<==> medium baseball)

(<==> large basketball))

:all)

;; 1. ball: small, golf

;; 2. ball: medium, baseball

;; 3. ball: large, basketball

2.4.3 Higher-Order Constraints

When a CDO includes one or more instance set relations, it is useful to write constraints that function across
sets of entities and variables. Table 4 lists the operators available for instance sets and higher order constraints
– e.g., constraints that take other constraints as parameters. Operators like every and at-least apply some
constraint to an instance set and require, respectively, that all or at least n of them hold. The mapc operator is
similar, but is used to apply side effects to all entities in an instance set, such as calculating the value of a
variable. Any first order constraint can make use of the special ord to determine which instance they are
being applied to. This allows for higher order constraints to be sensitive to ordering in an instance set; often

17

used when order reflects spatial arrangement.

Operator Description Example
n@ Entity set under an instance (n@ inst)

ord Special variable for instance ordinal (equalv (v@ (e1) ord) 1)

exactly Exactly n instances match (exactly 2 cstr (n@ inst))

at-least At least n instances match (at-least 1 cstr (n@ inst))

at-most At most n instances match (at-most 3 cstr (n@ inst))

mapc Map constraint with side effects across instances (mapc cstr (n@ inst))

Table 4: Instance set and higher order CDO constraint operators.

If the Ball entity in our example above was underneath an instance set (called balls), the 3 bidirectional
constraints would now need to be applied across each ball instance. For example:

(every

(and

(<==> small golf)

(<==> medium baseball)

(<==> large basketball))

(n@ balls))

The higher order every constraint would ensure that all ball instances adhered to the size/sport
constraints.

2.4.4 Computer Configuration Example

To demonstrate the use of each relation (sub-parts, choice points, and instance sets) and higher order
constraints, we will use a CDO that models the configuration of a desktop computer. Figure 5 shows the
CDO structure. At the top level, we say that a computer configuration consists of a set of components (0..n).
Each component has a type (graphics, memory, sound), a role in the configuration (active, not active), and
details of the product, such as its vendor, cost, and performance. Note that cost, performance, and model
are variables attached to the Product entity. Attached variables can be used in constraints, but unlike choice
points, Screamer does not generate possible values for them.

With no constraints and 8 components, the space of possible solutions is quite large. The 3 component
types (2 memory types), 2 roles, and 3 vendors make up (3 + 2)× 2× 3 = 30 possible choices. Assuming
our configuration only has 8 components, there are a total of 308 possible solutions! Clearly, we need some
constraints before exploring the solution space.

Table 5 lists the details of the components we will be considering in this example. The first 5 components
are new, and may be purchased for the given cost. The last 3 components are currently in use, so they cost
nothing to continue using. Performance numbers have been associated with each component, with higher
being better. We will say that the cost and performance of an entire configuration is the sum of the costs and
performances of its active components. To make things interesting, a performance boost of 5 will be applied
to any configuration with multiple memory chips that are all the same type (A or B).

18

Figure 5: A CDO representing a computer configuration with any number of components.

Type Vendor Model Cost Perf
1 Graphics Invideo D-Force 200 10
2 Memory Slamsong DDR9 (B) 20 10
3 Sound Tortoise Bay Waves 50 10
4 Memory Slamsong DDR7 (A) 10 5
5 Graphics Invideo B-Force 100 7
6 Memory Slamsong DDR7 (A) 0 5
7 Sound Slamsong Puddle 0 1
8 Graphics Slamsong A-Force 0 2

Table 5: Components to consider for computer configuration example. Existing components have zero cost.

We collect all of the constraints necessary to represent these 8 components into a LISP variable called
all-components (full source code is available in Appendix B). The LISP code below prints the first solution
from the constrained search space, including the summed cost and performance of all active components
(those with a * next to them).

> (solutions

(computer-configuration

available-components)

:one)

;; Configuration (cost:380, perf:50):

;; 1. * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; 2. * [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

;; 3. * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

19

;; 4. * [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

;; 5. * [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; 6. * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

;; 7. * [SOUND] SLAMSONG Puddle (c:0, p:1)

;; 8. * [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

If we interpret this solution as a recommended configuration, it suggest our computer should have 3
graphics cards, two sound cards, and 3 memory chips of varying types. A typical desktop computer, however,
will only have a single graphics/sound card, and one or two memory chips. We will further constrain the
solution space by enforcing the constraints in Table 6. Our computer will only have 4 components slots, and
must have 1 graphics card, 1 sound card, and 1 or 2 memory chips.

Constraint Description
max-4-active A maximum of 4 components may be active in any configuration.
only-1-graphics-card A configuration must have one graphics card.
only-1-sound-card A configuration must have one sound card.
1-or-2-memory A configuration must have 1 or 2 memory chips.

Table 6: Default constraints for computer configuration example.

Collecting the constraints from Table 6 into a LISP variable called *default-constraints*, let’s look at
the first solution again:

> (solutions

(computer-configuration

all-components

default-constraints)

:one)

;; Configuration (cost:280, perf:35):

;; 1. * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; 2. * [MEMORY] SLAMSONG DRR9 B (c:20, p:10)

;; 3. * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; 4. * [MEMORY] SLAMSONG DRR7 A (c:10, p:5)

;; 5. [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; 6. [MEMORY] SLAMSONG DRR7 A (c:0, p:5)

;; 7. [SOUND] SLAMSONG Puddle (c:0, p:1)

;; 8. [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

Now only 4 components are active, and we have the correct number of component types for our system.
Note that the performance is precisely the sum of the individual component performances because our
memory chips are of different types. This configuration includes all new, high performance components, and
may be the most expensive option. What would a solution look like if we didn’t want to spend any money
(i.e., use only existing components)?

20

;; One solution, force no cost

> (solutions

(computer-configuration

all-components

default-constraints

;; Apply constraint across all components

(every

;; If a component is active...

(if (equale (e@ component role) active)

;; ...its cost must equal zero.

(equalv (v@ (component details product) cost) 0))

(n@ components)))

:one)

;; Configuration (cost:0, perf:8):

;; 1. [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; 2. [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

;; 3. [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; 4. [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

;; 5. [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; 6. * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

;; 7. * [SOUND] SLAMSONG Puddle (c:0, p:1)

;; 8. * [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

While this configuration is definitely cheaper than the previous one, its less than a quarter of the
performance. Ideally, we’d like to explore the entire (constrained) solution space, and sort all solutions by
their cost and performance numbers. The CDO framework supports this type of search via user-defined
utility and objective functions.

2.4.5 Utility and Objective Functions

In addition to :all and :one, the solutions function accepts requests for :best. The extra keyword
arguments :utility-fun and :objective-fun are the functions for assessing the value of a given solution
(its utility), and for sorting the utility values (the objective). The example below defined a new function
performance-utility that simply extract the configuration’s performance value. The built-in > function
serves as our objective function, putting higher utility values (better performing solutions) on top. All
solutions with the “best” utility value in the space are returned.

;; Extract the summed performance

(defun performance-utility (cfg)

(v@ (cfg) performance))

;; Best performance

21

> (solutions

(computer-configuration

available-components

default-constraints)

:best

:utility-fun #’performance-utility

:objective-fun #’>)

;; Configuration (cost:280, perf:35):

;; 1. * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; 2. * [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

;; 3. * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; 4. * [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

;; 5. [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; 6. [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

;; 7. [SOUND] SLAMSONG Puddle (c:0, p:1)

;; 8. [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

;; Configuration (cost:270, perf:35):

;; 1. * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; 2. * [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

;; 3. * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; 4. [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

;; 5. [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; 6. * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

;; 7. [SOUND] SLAMSONG Puddle (c:0, p:1)

;; 8. [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

;; Configuration (cost:260, perf:35):

;; 1. * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; 2. [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

;; 3. * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; 4. * [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

;; 5. [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; 6. * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

;; 7. [SOUND] SLAMSONG Puddle (c:0, p:1)

;; 8. [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

Three solutions with a performance value of 35 (the maximum) exist in the solution space. The first
solution should look familiar: a recommendation to purchase all new components. The second solution,
however, achieves the same performance with a lower cost by reusing the existing DDR7 memory chip. The
final solution reduces the cost further by purchasing a new, lower-performing, DDR7 chip instead of the new

22

DDR9 chip. This is due to the memory performance boost mentioned earlier – a bonus 5 points are added to
any configuration with multiple memory chips of the same type (A or B). Conceptually (and verbosely), the
memory boost constraint looks like this:

;; Get the sum of all component performance numbers.

(let ((cfg-performance

(sum (mapc (v@ (component performance)) (n@ components)))))

;; Give +5 to configs with same memory types.

(if (and

;; If at least 2 active memory components...

(at-least 2 (and (equale (e@ component role) active)

(equale (e@ component type) memory)))

(or

;; ...each active memory chip must be type A...

(every (if (and (equale (e@ component role) active)

(equale (e@ component type) memory))

(equale (e@ component type memory m-type) A))

(n@ components))

;; ...or type B.

(every (if (and (equale (e@ component role) active)

(equale (e@ component type) memory))

(equale (e@ component type memory m-type) B))

(n@ components)))

;; If the memory chips are the same type, give the boost...

(equalv (v@ (configuration) performance)

(+ 5 cfg-performance))

;; ...otherwise, just return the sum of performances.

(equalv (v@ (configuration) performance)

cfg-performance))))

Multi-Objective Functions. As a last demonstration, we will show how multi-objective functions can be
used to order a solution space across multiple dimensions. The previous example used performance-utility

to sort by performance alone. When performances are highest and equivalent, we would like to also mini-
mize costs. This can be done manually for our computer configuration example because there are only 3
solutions with the maximum performance, but there may be many more in the general case.

The LISP code below defines a new utility function performance-and-cost-utility that creates a two-
element list for each configuration with the performance value first and the cost value second. The next
function, better-2, sorts solutions for the highest performance first, and the lowest cost second. With this as
our objective function, we should get the best performing configuration with the lowest cost value. Indeed,

23

running solutions with the new function returns a single solution: the configuration with mostly new
components that purchases a DDR7 memory chip! A graphical depiction of this solution is shown in Figure 6
with component 6 enlarged to show excluded choice points and the values of attached variables.

;; Extract performance and cost as a list

(defun performance-and-cost-utility (cfg)

(list

(v@ (cfg) performance)

(v@ (cfg) cost)))

;; Highest performance (first), lowest cost (second)

(defun better-2 (a b)

(cond

;; Performances equal - compare costs

((eq (first a) (first b)) (< (second a) (second b)))

;; Compare performances

(t (> (first a) (first b)))))

;; Best performance with lowest cost

> (solutions

(computer-configuration

available-components

default-constraints)

:best

:utility-fun #’performance-and-cost-utility

:objective-fun #’better-2)

;; Configuration (cost:260, perf:35):

;; 1. * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

;; 2. [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

;; 3. * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

;; 4. * [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

;; 5. [GRAPHICS] INVIDEO B-Force (c:100, p:7)

;; 6. * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

;; 7. [SOUND] SLAMSONG Puddle (c:0, p:1)

;; 8. [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

2.4.6 Constraint Knowledge and Cognition

The computer and ball examples above demonstrate interesting ways to use CDOs, but the cognitive aspect
of these domain ontologies may not be immediately apparent. Depending on how they are designed

24

Figure 6: Graphical representation of a single solution. One component is expanded to show excluded choice points and variable
values.

and searched, CDO solution spaces can be used to abduce likely explanations from evidence, deduce the
remainder of incomplete knowledge, and induce possible consequences from observed (or desired) actions.

In A Framework for Modeling and Simulation of the Artificial, Douglass et. al describe a situated, autonomous
agent that searches rooms in a task environment for a reward [12]. The agent contains a library of behaviors,
called behavior models, which detail how the agent can achieve a specific sub-task. A CDO is used to map
situational factors, such as the overall state of the task and current percepts, to specific behaviors. In other
words, the agent’s CDO helps the agent decide what to do next. This same CDO could also be used to
go the other direction: from behaviors to percepts. Given a set of asserted behaviors, the CDO’s solution
space will contain all percepts relevant to their selection. If the agent had determined a candidate set of next
behaviors based on some other knowledge, these inferred percepts would tell the agent what to look for in the
environment in order to exclude candidate behaviors.

25

3 Mr. Bits

The Mr. Bits model operationalizes components of Cant et. al’s Cognitive Complexity Metric [6] (CCM)
within the ACT-R cognitive architecture [2]. Using the Python debugger, Mr. Bits produces an ACT-R script
for a given Python program. This script simulates a programmer “reading” and evaluating the program, with
the final output being fixations and keystroke timings. When rendered on top of the program’s code, these
data have the appearance of human trials in front of an eye-tracker (Figure 7). The chunking and tracing
processes described in the CCM are realized through ACT-R’s declarative memory and visual modules
(specially, EMMA [27]). Keystrokes are also simulated via the ACT-R motor module, which utilizes Fitts
Law [14].

While Mr. Bits appears to read and evaluate a program from scratch, the model does not actually parse
text or determine the evaluation order of lines, and therefore cannot make errors. Despite this limitation,
the model serves as a starting point for a truly quantitative, cognitive model of program comprehension.
Mr. Bits produces human-like eye movements and keystrokes by “reading” over code tokens, recalling
variable values from memory, and performing mental arithmetic. A second model, called Nibbles (Section
4), complements Mr. Bits by transforming raw text into an internal (mental) representation of the underlying
program. This mental model can then be used to determine what to do next. Future work will integrate the
Mr. Bits and Nibbles models, removing the need for the Python debugger. The following sections describe
the details of Mr. Bits, and Section 3.5 compares the model’s output to human data collected from the same
24 Python programs.

Figure 7: Interface used by human programmers in the eyeCode experiment. Mr. Bits uses the same interface.

3.1 Architecture

Mr. Bits takes a Python program (a text file) as input, and produces a time series of fixations and keystrokes
as output. In between, there are three important stages (Figure 8): (1) the built-in Python debugger is used to

26

parse and evaluate the program, (2) an ACT-R LISP script is generated with a program-specific goal stack for
each step of the evaluation, and (3) the ACT-R script is executed, and the resulting trace is transformed into
fixation/keystroke timings. These data can then be compared to human data to, for example, see if human
programmers and Mr. Bits spent the same amount of relative time on each line of the program.

Figure 8: Mr. Bits model workflow. Code is transformed into fixation and response timings via Python and ACT-R.

The first stage of the Mr. Bits model parses and evaluates a Python program using the built-in Python
debugger. The output from this stage is a series of code lines in evaluation order, and the values of each
variable during the course of evaluation. Note that the ACT-R portion of Mr. Bits does not parse or evaluate
code. This is the focus of our second model, Nibbles (see Section 4). As the Python program is parsed,
variables are tagged with contextual information, such as which function they are defined in and how many
times they are assigned to. When program evaluation is simulated in ACT-R, Mr. Bits uses this information
to resolve variable ambiguities, and trace to specific code locations for variable values.

During the second stage, a self-contained LISP script is generated with a complete visicon (visual
locations of code words), a goal stack with each step of program evaluation, and a collection of general-
purpose productions for reading/remembering text, tracing variable values, and typing responses. The
Visual, Declarative, and Manual ACT-R modules are relied upon to generate human-like timings (see Figure 2
for a description of each module). The goal stack contains four general categories of goals:

1. Look at/remember line - The leftmost word of every evaluated code line is first fixated by the Visual
module. A declarative memory request for the “details” of the line is made and, if not present, every
word in the line is fixated from left to right.

2. Store variable value/location/reference - Every assignment statement, for loop, or mutable function
call (e.g., list.append) results in a new declarative memory chunk with the target variable’s name,
context, and physical location. Future attempts to recall the variable’s value will require at least one
trace to this location before the value is stored in declarative memory. Calls to functions defined in
the same program (e.g., def f(x)) create a series of variable reference chunks, linking the function’s
parameters to the supplied arguments. Future requests for a function’s parameter value will cause Mr.
Bits to follow the reference back to the call site arguments (e.g., f(1)).

3. Recall variable value - When a variable’s value is needed (for a computation, printing, etc.), a declara-
tive memory request is made for the exact name in the context of the current function. If not present,
Mr. Bits attempts to recall the variable’s physical location, follow references to other variables, or
consult previous variable definitions with the same name. If all else fails, the process is repeated within
the previous context (either another function or the global context). The values of traced variables are
stored in declarative memory, so future retrievals will succeed until the value is forgotten.

27

4. Typing responses - Every print statement produces a set of goals, causing Mr. Bits to fixate the
experiment’s output box, type each character of the response, and re-fixate the previous line. When
program evaluation is complete, Mr. Bits will fixate the “continue” button, move its hand to the virtual
mouse, and click the button to end the trial (see Figure 7).

State Transition Diagram. Figure 9 shows a state-transition diagram for the ACT-R simulation (final
stage) of Mr. Bits. At a high level, goals are processed one by one from the goal stack produced during the
previous model stage. When the goal stack is empty, Mr. Bits clicks the continue button to end the trial.
Table 7 describes each goal in detail as well as the specific ACT-R modules involved. The declarative memory
module is used heavily, with processes like variable look-up and arithmetic cast as memory retrievals (a
common practice in ACT-R modeling [2]).

Figure 9: General state diagram for a Mr. Bits ACT-R script. States highlighted in yellow may have variable timings when
ACT-R’s sub-symbolic mode is enabled.

The Goal Stack. A sample program and goal stack produced by Mr. Bits is shown in Figure 10. The
fixation timeline on the right-hand side of the figure shows the model fixating specific code lines and the
output box when typing responses. While Mr. Bits’ goal stack is pre-populated during the parsing stage, the
fixations generated during model execution depend on dynamic factors. First, code lines are only read (i.e.,
each whitespace-separated token is fixated) if they have not been viewed before. Second, variable values are

28

Goal ACT-R Module(s) Description

Go to line Visual/DM Moves the virtual eyes to the first character of a line. If
the details of the line cannot be retrieved from memory,
every token is read.

Remember line DM Stores the details of the current line in memory.

Recall variable Visual/DM Attempts to retrieve the value of a variable from mem-
ory. Failure results in a retrieval of the variable’s lo-
cation, a visual trace to it, and storage of the result in
memory.

Store variable DM Stores a variable’s value in memory.

Compute sum/product DM Retrieves a sum or product from memory.

Compare numbers DM Retrieves a numeric relationship (less/greater than)
from memory.

Evaluate Boolean expression DM Retrieves the result of a boolean expression (AND/OR)
from memory.

Fixate output box Visual Locates the output box on the screen and fixates the
upper-left corner.

Type response Manual Types a text response, character by character.

Table 7: Possible goals in the Mr. Bits model. DM stands for Declarative Memory.

only stored in the model’s declarative memory (DM) once they have been traced. As a result, Mr. Bits will
shift visual attention to variable values as they are needed. Finally, when ACT-R’s sub-symbolic behavior is
enabled (described in Section 3.3), declarative memory retrievals for code lines and variable values can fail
after enough time has passed and their DM activations have fallen below threshold. In other words, Mr. Bits
can forget. On the other side of the coin, sub-symbolic behavior will speed up the retrieval of frequently
and recently used chunks. Often-used arithmetic facts, such as 5× 8 = 40, may have increased activation
in memory, resulting in faster in-situ retrievals. Existing DM chunks and activations at the start of a trial
represent Mr. Bits’ long-term experience, while accumulated post-trial chunks/activations represent short-term
learning. We do not currently retain short-term learned information across Mr. Bits trials, though this would
be an interesting path for future research.

3.2 Variables and Context

In the scope of our simple Python programs, a variable has three pieces of information that uniquely identify
it. First, the surrounding function name is used to differentiate global and local function scope. Mr. Bits will
use the local function scope first when resolving a variable by name. Second, the number of times a function
has been called – its “function call index” – helps distinguish between multiple calls to the same function.
In Figure 11, f(x) is called twice, and so the local x variable within f will potentially have different values
during each call. Mr. Bits considers these two “versions” of x to be separate, but related, variables.

Lastly, variables can be reassigned within the same scope and function call index. In Figure 11, the

29

Figure 10: Example of a Mr. Bits goal stack (center) for a Python program (left). Processing the goals produces fixations and
keystrokes (right).

variable a (in the global scope) is assigned a value twice. Mr. Bits treats these as two different variable
definitions with the same name, and will always trace to the most recent definition first (i.e., the definition
with the highest line number in the current scope).

Figure 11: Variable context

These three pieces of information: function scope, function call index, and definition number, allow
Mr. Bits to uniquely identify variables in each of our sample Python programs. More complex programs,
especially those with class definitions, will require extensions to this basic notion of variable context.
Presently, Mr. Bits only needs to locate values from the right-hand side of assignment statements (e.g., x
= 5) and passed as function arguments (e.g., f(5)). With classes, it will be necessary to maintain the type

30

information for each definition of a variable. Python allows variables to change types when reassigned, so
the expression x.foo(5) may be dispatched to different code depending on the (current) type of x. For now,
we leave these extensions as future work.

3.3 Sub-symbolic Chunking and Tracing

ACT-R can operate in symbolic or sub-symbolic mode. In the former mode, all ACT-R modules (visual,
memory, etc.) behave with consistent timings. For example, the declarative memory module in symbolic
mode will retrieve chunks immediately, bypassing the activation calculus. When sub-symbolic behavior is
enabled, however, retrieval times will depend on the frequency and recency of a chunk’s use. Additionally, a
chunk can be “forgotten” if its activation falls below a critical threshold (see rt in Table 8). Mr. Bits relies
heavily on declarative memory for remembering code line details, variable values, traced locations, and
arithmetic/boolean facts (see Section 3.4) for details). In sub-symbolic mode, Mr. Bits will get faster at
remembering a recently or often-used variable value. These values can also be forgotten over time, though
none of our sample programs are long enough to demonstrate this behavior.

The activation calculus in ACT-R subsumes the two familiarity parameters in the Cognitive Complexity
Metric (Section 2.2). The RF and TF parameters, respectively chunk and trace familiarity, are operationalized
as retrieval latency in declarative memory. Frequently-used, or familiar, code lines, variable values, and trace
locations will be retrieved quickly whereas less familiar items will take more time. If we equate cognitive
complexity with the time it takes Mr. Bits to read through a program, this successfully captures the intentions
of the familiarity CCM parameters.

A total of 5 ACT-R parameters have been given non-default values in Mr. Bits (Table 8). The latency
factor (lf) and retrieval threshold (rf) parameters were set via an informal search in order to better fit
the human data. These two declarative memory parameters are among the most frequently modified
ACT-R parameters, and the chosen values are within the ranges used in other human studies [42]. The
imaginal-delay parameter was set to 0 in order to quickly move newly created chunks from the imaginal
buffer into declarative memory. Mr. Bits does not use the imaginal buffer to hold a representation of the
current line or variable, so there is no modeling need for a delay. Lastly, the two the motor parameters (feature
preparation and burst time delays) were reduced by a factor of 15 in order to account for programmers’
above average typing speeds. As with the declarative memory parameters, an informal search was used to
produce visibly similar behavior relative to human trials. Neither motor parameter has an entry in the Max
Planck Institute for Human Development’s ACT-R parameter database [42], so it is unknown whether our
values are cognitively plausible.

3.4 Sums, Comparisons, and Boolean Expressions

Mr. Bits computes sums/products/differences, does numeric comparisons (x < y), and evaluates simple
boolean expressions (x ∧ y) using declarative memory. Each of these “facts” reside in Mr. Bits’ declarative
memory – e.g., the sum of 2 and 3 is 5 – and have been given a high base level activation, representing that they
are very well rehearsed. We do not model an explicit process of addition, subtraction, etc., such as counting
up or down from an anchoring number, because (1) virtually all numeric operations in our simple Python
programs are done with small operands (0-10), and (2) participants in our experiment were experienced

31

ACT-R Parameter Default Value Description

lf 1.0 0.01 Latency factor (F in the retrieval equation).

rt 0.0 -2.0 Retrieval threshold. Minimum activation for retrieval.

imaginal-delay 0.2 0.0 Delay in seconds for imaginal buffer request.

motor-feature-prep-time 0.05 0.001 Time in seconds to prepare each movement feature.

motor-burst-time 0.05 0.001 Minimum time in seconds for any motor movement.

Table 8: ACT-R parameters with non-default values used in Mr. Bits.

enough to have memorized these basic mathematical facts. ACT-R models of basic arithmetic exist [2], but
we assume our participants have internalized these facts directly in long-term memory.

When Mr. Bits “computes” the sum of two numbers, x and y, a declarative memory retrieval is initiated
with the constraints that it must be a sum-fact whose operands are x and y. Operations with more than two
operands are serialized into multiple retrievals, each with only two operands. For example, the sum 1 ∗ 2 + 3
would be transformed into two retrievals:

1. A prod-fact with operands 1 and 2 (result: 2),
2. A sum-fact with operands 2 and 3 (result: 5)

Mr. Bits relies on Python to determine the order of operations, and so is not capable of making arithmetical
errors as long as its declarative memory facts are consistent.

If ACT-R’s subsymbolic behavior is disabled, there is little difference between declarative memory and a
database. With subsymbolic effects, however, subsequent retrievals of the same fact will be faster, especially
when done in quick succession. For example, Mr. Bits will take less time to compute 2× 2× 2 than 2× 3× 2
because, in the former case, the fact that 2× 2 = 4 will be retrieved quicker the second time. Because
chunks in ACT-R’s declarative memory have an activation value, the same system can model both long-term
and short-term/working memory [36]. Capacity limitations for short-term memory appear in ACT-R as a
side effect due to (1) the ability to retrieve only one chunk at a time, and (2) the time costs associated with
retrievals and productions (steps in the model). Only a fixed number of chunks can be attended to before
activation decay becomes a factor in retrieval. Cognitive theories of program complexity often cite Miller’s
Magic Number [23] as a potential source of complexity – e.g., having a programmer attend to too many
things simultaneously in a snippet of code will make it harder to understand.

Mr. Bits currently contains sum, product, difference, less-than, and greater-than facts for numbers zero
to ten. In order to model more experienced programmers, additional facts could be added to declarative
memory. For example, intermediate and advanced programmers will quickly note that 2× 2× 2 = 23 = 8,
and not need to mentally compute the intermediary products.

3.5 Results and Discussion

In order to evaluate Mr. Bits, we compare the model’s performance on 24 of the 25 programs used in our
eyeCode experiment (Section 2.1) with data from the 29 human programmers. All model runs used the

32

same ACT-R parameters, as described in Table 8. We considered 4 different versions of Mr. Bit, each with a
combination of ACT-R’s subsymbolic computing turned on (SSC) or off (SC), and with the ability to either
perfectly remember lists (RL) or forget lists (FL).

3.5.1 Human-Model Comparison

We compared the relative spent on each line of each program by Mr. Bits to the time spent by our participants.
For some programs, a large difference is visually apparent (Figure 12, human data is on the left). If Mr. Bits
is allowed to remember the values of all variables after tracing them, it will avoid the need to continually
refer back to lists like x and y like humans do. We created a setting for Mr. Bits that stopped it from
remembering non-empty list variable values, forcing the model to trace those variables over and over. With
this setting enabled, the shift in where time is spent is again visually apparent (Figure 13), and appears
closer to the human data. The two versions of Mr. Bits, with the setting disabled or enabled, are referred to
as RL (Remember Lists) and FL (Forget Lists). Combined with the option to place ACT-R in symbolic or
sub-symbolic mode, we have four different versions of Mr. Bits to compare against human data:

Figure 12: Relative time spent on each line of between functions by human participants (left) and Mr. Bits Remember Lists
(right).

1. SC + RL - Symbolic Computing + Remember Lists. All declarative memory retrievals return immedi-
ately, and lists can be fully remembered.

2. SC + FL - Symbolic Computing + Forget Lists. All declarative memory retrievals return immediately,
and lists are traced every time.

3. SSC + RL - Sub-Symbolic Computing + Remember Lists. All declarative memory retrievals return
immediately, and lists can be fully remembered.

4. SSC + FL - Sub-Symbolic Computing + Forget Lists. All declarative memory retrievals return immedi-
ately, and lists are traced every time.

Which version of Mr. Bits correlates best with human data? We compared model runs from each version
to human data for each program by running a Spearman correlation between the average times spent on each
line. . In addition, we created two much simpler “null” models for baseline comparison: called line length
and line number. For the line length model, relative time spent on each line is simply proportional to its
length, so longer lines will receive more time. In the line number model, line time is inversely proportional

33

Figure 13: Relative time spent on each line of between functions by human participants (left) and Mr. Bits Forget Lists (right).

to line number, so lines appearing earlier in the program will receive more time. Figure 14 provides an
example of each null model using the between functions program.

Figure 14: Examples of relative line times generated from the two null models: line length (left) and line number (right).

The complete correlation matrix for 4 versions of Mr. Bits and the two null models is shown in Figure 15.
For each program and each model, the Spearman correlation is computed using the average times spent
on each line for the model and our human programmers. A higher, green value indicates a strong positive
correlation while a higher, redder value means a strong negative correlation with the human data. Correlation
values not meeting the α = 0.05 significance criteria or below 20 (0.2) are not displayed (though their cells
are still colored).

If we take the sum of correlation values as our success criteria, then the line length and SSC+FL (sub-
symbolic computing + forget lists) models come out on top, followed somewhat closely by SC+FL, SSC+RL,
and SC+RL 9. This success criteria and the use of correlations here is not intended to provide a statistical
argument for one model over another. Instead, we simply take these results as evidence for two things: (1)
forgetting lists is a useful model setting, and (2) line length is a strong contributor to average line time. While
it is common to accept a simpler model in favor of a more complex one (e.g., line length vs. any Mr. Bits
version), our goal with Mr. Bits is not just achieving a good data fit. We wish for our model to explain the
programmer’s underlying cognitive processes while achieving a reasonable fit to human data. The time
spent by Mr. Bits on each line is not just a function of its character length, but also depends on when and how
frequently the line is viewed. When combined with the Nibbles model (see Future Work in Section 5.1), it
will be possible for the model to spend less time on more idiomatic lines – i.e., those fitting a commonly-seen

9The line number model trails far behind the others, so we do not consider it further.

34

Figure 15: Correlations between relative time spent on each line for human trials, 4 versions of Mr. Bits, and two simple models
based on line length and number.

35

template.

36

3.5.2 Human Trial Times

We now compare the total time taken by Mr. Bits and humans to read and evaluate each program. This
“trial time” is a useful summary metric if we assume that more cognitively complex programs should take
longer to understand and predict their output. Intuitively, we can imagine this is a function of program
length, but with the added twist that commonly-used or repeated patterns will speed participants along.
Unfortunately, errors can reverse expectations because failing to properly evaluate portions of the program
may result in a smaller trial time (or vice-versa, depending on the program). Therefore, we must be aware of
the correctness of a human trial in addition to its length when comparing it to Mr. Bits.

Figure 16: Mr. Bits trial times (4 versions) compared to human trial time distributions for each program. Incorrect trials are
colored red.

37

The distributions of human trial times across 24 Python programs is shown in Figure 16. For each
program, the individual trial times (bars) have been sorted from shortest to longest, and the trials with
incorrect responses have been colored red. The (single) trial times for all 4 versions of Mr. Bits (with or
without subsymbolic, remembering or forgetting lists), are shown as lines, plotted where they would fall in
the sorting process. In some program sets, such funcall, there is no difference between the remember lists
(RL) and forget lists (FL) versions of Mr. Bits because these programs do not contain lists.

With few exceptions, incorrect human trials do not appear strongly correlated with trial time. The two
notable exceptions are counting twospaces and scope samename. The former is easily explainable: the most
common error significantly reduces the amount of expected output, and therefore the number of response
characters the participant must type. The scope samename error pattern is not as easy to explain, and may
simply be a fluke. Regardless, it is visually apparent that Mr. Bits’ trial times tend to fall in the middle of
the human distributions. An interesting exception is overload strings, where Mr. Bits takes longer than
any human participant when ACT-R’s subsymbolic mode is engaged. This is likely due to ACT-R’s manual
(typing) module; its subsymbolic timings are subject to Fitts Law. Because this program involves typing
English words like “bye” and “penny”, participants are likely to be much faster than Mr. Bits, for whom
“nypen” is just as slow to type as “penny”.

3.5.3 Trial Time as a Complexity Metric

Because Mr. Bits’ trial times track human performance (with some exceptions as caveats mentioned above),
it may be useful as a complexity metric for ranking programs (or versions of a program). Figure 17 contains
a correlation matrix for the trial times of all 4 Mr. Bits versions against 4 commonly-used complexity metrics:
lines of code, Cyclomatic Complexity [22], Halstead Volume [17], and number of output characters. Again,
non-significant (α = 0.05) correlations and correlation values less than 20 (0.2) are not printed.

Figure 17: Correlations between Mr. Bits trial times and code complexity metrics for all programs.

While the correlation matrix cannot directly tell us whether or not Mr. Bits’ trial time (MBTT) is a useful

38

complexity metric, we can at least see that it is not strongly correlated with any of the common source code
metrics. In other words, MBTT is not simply restating the fact that a program has many lines or conditional
statements (Cyclomatic Complexity). Interestingly, all versions of MBTT are moderately correlated with
Halstead Volume, which is derived from the ratios of unique and total operators and operands. More
research is needed to untangle this relationship, but we expect the way Mr. Bits computes sums and products
to play a major role (Section 3.4). Lastly, the moderate to strong correlations between MBTT and output
chars is expected because Mr. Bits must type a response for each program. It is good news too that the
MBTT/output chars correlations are not very strong or perfect. This would suggest that Mr. Bits’ trial times
are almost entirely driven by its typing speed! Overall, the correlation matrix provides evidence for the
utility of MBTT as a code complexity metric. An obvious path for future work (Section 5.1) would be to
extend Mr. Bits to work on a larger subset of Python and run the model on a large collection of open source
programs (e.g., from GitHub or SourceForge).

3.5.4 Limitations and Threats to Validity

Mr. Bits has a number of limitations and specific design choices that may threaten its validity as a model
of human program comprehension. First and foremost, the model cannot make errors. This is due to the
fact that Mr. Bits does not parse code, and therefore cannot internalize an incorrect program. Our other
model, Nibbles (Section 4), does just this, but does not predict fixations and keystroke timings like Mr. Bits
does. Unlike a human too, Mr. Bits fixates each and every word when reading a line (the line is skipped if it
can be recalled from memory). This is not how humans read natural language text [25], and it is clear from
our experimental data that this is not how programmers read code either. A more comprehensive model
combining Mr. Bits and Nibbles would be capable of inferring unobserved code words or tokens, and avoid
the need to fixate them. Eye-tracking studies of programmers have shown that keywords are the least fixated
tokens in a program, providing evidence that easily inferred tokens (e.g., the in keyword in for x in y) are
often skipped [5].

Python programs with user-defined classes, generators, and other advanced language features are not
currently supported by Mr. Bits. Additionally, the program must be script-like – i.e., compute and print
values to the terminal. There are many other kinds of programs, such as those with a graphical interface,
but Mr. Bits has been designed to work with a single task: output prediction. Additionally, Mr. Bits’ code
environment is quite bare-bones compared to modern integrated development environments (IDEs). Syntax
highlighting alone could drastically change the model, and is currently being investigated in the context of
Nibbles.

Finally, the LISP scripts generated by Mr. Bits will likely give ACT-R modelers pause. Unlike most ACT-R
models, Mr. Bits scripts contain dozens of productions, effectively removing any ability to claim that it’s a
low-level model of human program comprehension. Because each production in an ACT-R model is (in many
ways) a free parameter, it is not possible to argue that their specific combination represents the best possible
model when there are dozens of productions. While we cannot argue for our individual productions, we
can still find value in the high-level behavior of Mr. Bits. ACT-R imposes constraints on how its modules
interact, and how long particular actions take (e.g., shifting visual attention). Thus, Mr. Bits will exhibit
different macro behaviors when particular programs emphasize different modules by, for example, having
information physically more spread out or by including many unrelated calculations. In this way, Mr. Bits

39

serves as a framework for describing human program comprehension and, most importantly, as a model
whose high-level predictions can be falsified by future experiments.

40

4 Nibbles

The Mr. Bits model builds on top of the ACT-R cognitive architecture to produce human-like fixation and
keystroke timings while evaluating simple Python programs (Section 3). Mr. Bits does not, however, actually
parse text into an internal representation and determine the evaluation order of program lines. For this
purpose, we propose Nibbles, a model of program comprehension that makes use of Cognitive Domain
Ontologies, or CDOs, to internally represent a program (Section 2.4). The process of searching for the first
constraint compliant solution in the CDO’s solution space allows Nibbles to handle missing text and local
ambiguities. Future work will join the Nibbles and Mr. Bits models to produce an end-to-end model capable
of transforming raw text into human-like fixations and keystroke timings.

4.1 Choice Point Uses

Formally, Nibbles represents a program using a Cognitive Domain Ontology, or CDO. A CDO is a tree with
entities and relations, together describing a space of possible “solutions”. With a set of domain and/or
situation-specific constraints, a constraint solver is used to prune the tree and enumerate one or more
constraint-compliant solutions. The choice point relation is special, in that only one of its child entities may be
present in a given solution. Choice points are the source of generativity in a CDO, and Nibbles uses them in
three important ways: (1) to classify entities, (2) to determine group membership, and (3) to control the size
of the solution space. We expand on each of these uses of choice points below.

Choice points can be used to classify or categorize a particular entity. For example, the Line Type choice
point in the Nibbles CDO (Figure 20) classifies a Line entity as either a function call, variable assignment, etc.
When searching for solutions, each of these choices will be enumerated and checked against the constraints.
Every constraint-compliant solution will contain a single choice for every active choice point.

Lines are grouped by Nibbles using spatial and semantic cues. Relative indentation and line type (e.g., a
for loop), will determine if this and nearby lines form a cohesive group (e.g., a for loop plus its body). The
Group Role choice point can either be Active or Inactive for every line in every line group. Each Line Group
contains all lines in the program, initially with an indeterminate Group Role. When Active, Nibbles will
enforce additional constraints to ensure that a line is only active in one group, and that the given line type
fits within the group. This is not a classification of lines, but is instead an indication of a line’s membership
in a group.

In addition to classification and group membership, Nibbles uses choice points to limit the size of the
CDO solution space. At every level of the CDO tree, a Detail Level choice point controls whether instances
at that level will be High or Low detail. If High detail is set for every Detail Level, the complete solution
space is available – down to the character level of every word in the program. Without high performance
computing resources, it is infeasible to enumerate all solutions for programs with only 5 lines or less. Nibbles
is able to explore much larger programs by carefully controlling the detail level such that only the currently
attended line must be High detail. Using a form of attention, then, Nibbles is able to tame large solution
spaces without being exposed to the full brunt of the combinatorics.

41

4.2 CSP and Text Interpretation

Nibbles parses and interprets text using three components: (1) a CDO tree to describe the structure of the
domain, (2) a collection of constraints to exclude non-sensical solutions, and (3) a constraint solver enumerate
constraint compliant solutions from the domain (Screamer [33]). Each line of code is provided to Nibbles
with high fidelity, as if it were placed under a virtual fovea.

Figure 18 depicts the transformation of a simple three line program (bottom) into a “mental model”
representation in Nibbles (right). Using its existing knowledge of Python (constraints), Nibbles abduces
that the three lines form a single group, comprised of two assignment statements and one print statement.
Furthermore, the types of variables a and b are inferred as well as the sense of the overloaded plus (+)
operator (numeric sum versus string append).

Figure 18: Information flow for Nibbles model. The interpretation of each line involves a trip to the constraint solver and a
subsequent re-ordering of choice points.

Nibbles reads programs incrementally line-by-line by focusing a character-aligned sensor (fovea) on one
line at a time. The observed characters are asserted into the CDO along with the following information:

1. The sizes of unobserved tokens on the current line and two lines below are available.
2. The indent level of the line below (relative to the current line) is available.
3. The sizes of unobserved lines is available.
4. The presence of text above and below the current line is available.

Figure 19 shows the first few steps of Nibbles reading the overload plusmixed program. The complete
program is on the left (highlighted for the reader’s benefit). On the immediate right, unobserved characters
are replaced with “?”. Spaces between blocks of “?” represent the availability of token sizes, while entire
lines of “?” reflect knowledge of line lengths.

42

Figure 19: Incremental reading of a program. The first two lines of the program are observed, and the third line is inferred.

Unobserved code is represented in the Nibbles CDO by setting the line group, line, or token type to
Unknown. Additionally, Low Detail choice points are used to dynamically control the size of the CDO
solution space. Summary information, such as the size of a line or token, is stored in an unobserved Low
Detail choice. This will stop instance set (of tokens, characters, etc.) under the High Detail choice from
being enumerated by the constraint solver. This serves the dual purpose of speeding up the model and
representing a form of attention. With every High Detail choice set, exploring the space of even a five line
program can be computationally infeasible. See Section 4.1 for more details.

4.3 The Nibbles CDO

The structure of Nibbles’ CDO is shown in Figure 20. A program is broken down in the following components:

• Line Groups - Contiguous groups of related code lines that may or may not all be at the same indent
level.

• Lines - A single code line in a line group.
• Tokens - A single Python token/word in a line (usually separated by whitespace).
• Characters - A single character in a token.

The complete Nibbles CDO is shown in Figure 20. A program consists of one or more line groups, which
are made of one or more lines, etc. As previously described, nested instance sets at each level of the CDO
hierarchy fall under a High Detail choice. By toggling the detail level choice points, Nibbles can dynamically
contract and expand the solution space – a form of attention. A particular solution for the Nibbles CDO
will contain High Detail information for observed code, and Low Detail (or Unknown) information for
previously/unobserved code.

Line groups, lines, and tokens are categorized using the Line Group Type, Line Type, and Token Type
choice points. Table 9 contains an exhaustive list of each category, and a brief description of how the category
is verified by Nibbles’ constraints. Lines that contain an expression, such as the right-hand side of a variable

43

Figure 20: Structure of the Nibbles CDO.

assignment, make use of the additional Line Expression structure to determine the expression’s form and
Python type. Table 10 lists the currently supported forms/types, which focus just on single token and simple
binary expressions (e.g., x + 1). Future work will expand this into a more comprehensive set.

4.4 Programming Knowledge as Constraints

A CDO captures the structure of a domain as well as its constraints. Nibbles encodes knowledge of Python
into both. The textual structure of a program is represented hierarchically in Nibbles’ CDO, as groups of
lines, tokens, and characters. Constraints at every level of the hierarchy enforce Python’s grammatical rules
– e.g., the line after a function def must be indented. Table 11 provides high-level descriptions of Nibbles’
constraints on Line Groups, Lines, and Tokens.

In the Screamer constraint solver, constraints are really just Common LISP functions that inspect proposed

44

Category Name Description
Line Group Other/Generic Default line group type (no other type matches).

Function A function definition. 1st line must a Function Def line, 2nd line
must be indented.

For Loop A for loop block. 1st line must be a For line, 2nd line must be
indented.

If Statement An for loop block. 1st line must be a For line, 2nd line must be
indented.

Line Function Def Starts with a def Keyword token, followed by a Name and (op-
tional) arguments.

Function Call Starts with a Name token, followed by (optional) arguments.
Variable Assignment Starts with a Name token, followed by an = Symbol and an ex-

pression.
For Line Starts with a for Keyword token, followed by a Name, in Key-

word, and either a Name or list literal.
If Line Starts with an if Keyword token, followed by an expression.
Print Starts with a print Keyword token, followed by an expression.
Return Starts with a return Keyword token, followed by an expression.
Blank Line contains only Whitespace tokens.

Token Symbol A non-alphanumeric token – e.g., =, (, etc.
Number A single string of numeric characters – e.g., 123.
Name A single string of alphabetic characters and underscores – e.g.,

the list.
Keyword One of def, for, if, print, in, return.
String/Text Any string of characters that are not blank and not one of the

other types.
Whitespace/Blank A token that is entirely whitespace or of zero length.

Table 9: Types of tokens, lines, expressions, and line groups in Nibbles.

sections of the CDO tree and produce failures when specific checks are violated. Because of this, it can be
difficult to describe precisely what constraints are doing without using the code itself. While this assumes a
familiarity with Common LISP, the Screamer (and Screamer+) constraint language, and the codified Nibbles
CDO structure, it is still possible to meaningfully understand the constraints without them. Listing 2, for
example, shows a snippet of the constraint the verifies tokens based on characters. In this particular snippet,
a print keyword has been proposed, and is verified by a set of assertions. Even without the necessary
background, this constraint snippet is fairly readable – i.e., it is clear precisely how specific characters are
being checked.

45

Form Type Operator Description
Literal Number Basic numeric literal (123)

String Empty or non-empty string literal ("" or "hello")
Variable Number Variable name only (x).

String Variable name only (x).
Variable-Literal Number Sum Variable name and numeric literal (x + 1).

String Append Variable name and string literal (x + "hello").
Variable-Variable Number Sum Variable names only (x + y).

String Append Variable names only (x + y).

Table 10: Expression forms in Nibbles. Used in Print statements, Variable Assignments, etc.

Category Name Description
Line Group line-group-indent If lines A and B in same group, then B is either in-line with A or

indented.
all-lines-active Every line must be active in exactly 1 group, in line order.
line-group→ lines Verifies a line group type based on 1st and 2nd active lines.

Line line→ tokens Verifies a line type based on the first few tokens. The Variable
Assignment, Print, If Line, and Return line types have their ex-
pression forms checked as well.

line-whitespace-at-end If a line contains blank and non-blank tokens, all Whites-
pace/Blank tokens must be at the end of the line.

Token token→ chars Verifies a token type based on its characters. Anything not en-
tirely whitespace and not any other token type is considered
Text.

Table 11: Constraints in the Nibbles model.

(cond

((eq token-type ’keyword-type)

(assert!

(or

;; print keyword

(and

(equalv keyword-kw ’print)

(equalv (nth 0 char-values) #\p)

(equalv (nth 1 char-values) #\r)

(equalv (nth 2 char-values) #\i)

(equalv (nth 3 char-values) #\n)

(equalv (nth 4 char-values) #\t)

(equalv (v@ (token) length) 5)

(rest-chars-are-whitespace char-values 5))

;; ...

))))

Listing 2: Snippet from the “token→ chars” constraint that verifies a print keyword.

46

4.5 Results

Brief introduction

4.5.1 counting - twospaces

Line grouping will favor cohesive groups without further information. Does this mean programmers will
also report incorrect indentations for second print line?

Whitespace primes wrong grouping Lack of indent info fails to cull wrong solution (last print is in its
own line group)

Predictions
Moving print up 2 lines will reduce errors (yes) Participants who make errors will recall last line without

indent (?) Adding an ”end” token below final print will reduce errors (?)
Open Questions
Does changing ”Done counting” make a difference? Does adding a nested for look help?

for i in [1, 2, 3, 4]:

print "The count is", i

print "Done counting"

Listing 3: Code from the counting - twospaces program in the eyeCode experiment.

4.5.2 overload - plusmixed

Priming occurs when integer/plus choice points are moved to front. A weaker constraint for identifying
variable types may also be the case (has digit versus only digits).

Priming re-orders (number/string, plus/append) choice points Weak number/string constraint fails to
cull wrong solutions

Predictions
Priming with append + will reduce errors (maybe) Not including numeric characters will reduce errors

(?) Adding type tokens or making strings and numbers visually distinct will reduce errors (?)
Open Questions
How does this help determine ”cognitively optimal” operator overloading?

47

a = 4

b = 3

print a + b

c = 7

d = 2

print c + d

e = "5"

f = "3"

print e + f

Listing 4: Code from the overload - plusmixed program in the eyeCode experiment.

4.5.3 scope - diffname

Expectations re-order choice points (a function must ”do something”) Incomplete parameter passing con-
straints allow wrong solution Right solution is buried

Predictions
Experience will reduce errors (yes) Parameter name will not influence errors (yes) Reminding participants

of Python pass-by-value will reduce errors (?)
Transactions - action, location, object (target). Is location or object mistaken because of strong top-level

preference to a function to have an “observable” action?
Look at transactions in [21]. Mentioned in Rist ([26]).

From Code Fragment to Single Line - The creation of just a single fine of a code requires a great
deal of reasoning and planning. Mayer (1987) described the conceptual structure underlying a line
of BASIC code and found that the smallest piece of knowledge used in program understanding is
a transaction. A transaction can be described using three categories: what operation takes place
(action), where it takes place (location) and what object is acted upon (object). As an example, IO
transactions are required to understand the line of code, LET B = A f 1, which simply adds one to
an integer (A) and stores the resulting sum in memory (in B). First, the integer and the increment
must be defined and stored in a temporary memory (4 steps), and added together (1 step). Then
the location of the sum must be defined, the sum placed in that location and deleted from the
temporary memory (3 steps). Finally, control must be transferred to the next statement and that
statement executed (2 steps).

48

def add_1(num):

num = num + 1

def twice(num):

num = num * 2

added = 4

add_1(added)

twice(added)

add_1(added)

twice(added)

print added

Listing 5: Code from the scope - diffname program in the eyeCode experiment.

4.6 Discussion

4.6.1 Model Capabilities

Errors First solution assumed to be correct (other orderings?) Need back-tracking on null set
Attention Full CDO space is infeasible to search entirely Combinatorics are carefully controlled via detail,

assertions
Abduction of Missing Code Bottom-up sensing + top-down knowledge A kind of ”cogent confabulation”?

(Hecht-Nielson, 2007)

4.6.2 Limitations and Threats to Validity

Incomplete Need to finish Example 3 Doesn’t generate goals for end-to-end model No back-tracking when
errors are noticed

Decision procedure First solution assumed to be correct Simple priming from choice point ordering
Engineered Knowledge Domain structure and constraints are hand-built Few experiments to draw from

49

5 Conclusion

Compare and contrast formalisms

5.1 Future Work

5.1.1 Improving Mr. Bits

• Compare to complexity metrics (e.g., [11]).
• More experiments

5.1.2 Nibbles 2.0

• Human experiments for decision procedure
• High-level schemas, ontology
• Beyond output prediction task
• Forgetting, fall-back strategies

5.1.3 Combining Mr. Bits and Nibbles

• End-to-end model

6 Acknowledgements

Grant R305A1100060 from the Institute of Education Sciences Department of Education and grant 0910218
from the National Science Foundation REESE supported this research.

50

A Appendix - Mr. Bits Code

1 ;; ===

2 ;; MR. BITS

3 ;; ===

4

5 ;; Maximum number of seconds the model can run

6 (defparameter *max-time* 500)

7

8 ;; ---

9 ;; PROGRAM (funcall - space)

10 ;; ---

11 ;; 1. def f(x):

12 ;; 2. return x + 4

13 ;; 3.

14 ;; 4. print f(1) * f(0) * f(-1)

15 ;; ---

16

17

18 ; --

19 ; GOAL STACK

20 ; --

21

22 ;; Fixed goal stack for model

23 (defparameter *goal-stack* ’(

24 go-to-line-1

25 remember-line

26 go-to-line-4

27 link-to-value-f-x-L4-C8-0-1

28 go-to-line-2

29 do-read-line-2-f-x-1

30 compute-sum-line-2-1-1

31 remember-line

32 go-to-line-4

33 remember-line

34 link-to-value-f-x-L4-C15-1-1

35 go-to-line-2

36 do-read-line-2-f-x-2

37 compute-sum-line-2-2-1

38 remember-line

39 go-to-line-4

51

40 remember-line

41 link-to-value-f-x-L4-C22-2-1

42 go-to-line-2

43 do-read-line-2-f-x-3

44 compute-sum-line-2-3-1

45 remember-line

46 go-to-line-4

47 compute-prod-line-4-1-1

48 compute-prod-line-4-2-1

49 remember-line

50 fixate-output-box

51 type-response

52 return-from-output-box

53))

54

55 ;; List of responses that will be typed

56 (defparameter *responses* (list

57 (format nil "60~%")

58))

59

60 ;; List of tokens to put in visicon

61 (defparameter *tokens* ‘(

62 (0 0 33 23 "def")

63 (44 0 55 23 "f")

64 (55 0 55 23 "(x):")

65 (44 23 66 23 "return")

66 (121 23 11 23 "x")

67 (143 23 11 23 "+")

68 (165 23 11 23 "4")

69 (0 69 55 23 "print")

70 (66 69 44 23 "f")

71 (77 69 44 23 "(1)")

72 (121 69 11 23 "*")

73 (143 69 44 23 "f")

74 (154 69 44 23 "(0)")

75 (198 69 11 23 "*")

76 (220 69 55 23 "f")

77 (231 69 55 23 "(-1)")

78))

79

80 ; --

52

81

82 ;; Convert text character to a key ACT-R can type

83 (defun actr-key (c)

84 (cond

85 ((eq c #\newline) ’return)

86 ((eq c #\space) ’space)

87 ((eq c #\,) ’comma)

88 (t (string c))))

89

90 ;; Get the visicon y coordinate from a line number (1-based)

91 (defun line-to-y (line)

92 (let ((y-pos (* 23 (- line 1)))

93 (line-height (max (round 23 .8) (+ 23 1))))

94 (+ y-pos (round line-height 2))))

95

96 ;; Get the visicon x coordinate from a column number (0-based)

97 (defun col-to-x (col)

98 (* col 11))

99

100 (defmethod rpm-window-key-event-handler ((win rpm-window) key)

101 (proc-display))

102

103 ;; Evalate the goal stack and type responses

104 (defun do-trial ()

105 (reset)

106

107 ; Consider underscores, commas, parens, colons, and brackets as

108 ; word separating characters.

109 (add-word-characters #_ #\, #\(#\) #\: #\[#\])

110

111 ; Create an experiment window

112 (let* ((tokens *tokens*)

113 (window (open-exp-window "eyeCode Trial" :width 1600 :height 500)))

114

115 ; Add all tokens to the visicon

116 (loop for (x y width height text)

117 (integer integer integer integer string)

118 in tokens

119 do (let ((static-text

120 (add-text-to-exp-window :text text :x x :y y

121 :width width :height height)))

53

122 ; Use actual width and height of the token text

123 (setf (text-height static-text) 23)

124 (setf (str-width-fct static-text)

125 (lambda (str) (* 11 (length str))))))

126

127 ; Add the continue button (ends the trial)

128 (add-button-to-exp-window

129 :text "Continue" :x 1115 :y 370

130 :width 75 :height 25)

131

132 ; Go, Johnny, Go, Go, Go

133 (progn

134 (install-device window)

135 (proc-display)

136 (print-visicon)

137 (run *max-time*))))

138

139 ; --

140

141 (clear-all)

142

143 (define-model mr-bits

144 ; Fixed random seed for reproducibility

145 (sgp :seed (123456 0))

146

147 ; Set ACT-R parameters

148 (sgp :v t :needs-mouse nil :show-focus t :esc nil :lf 0.01 :trace-detail high

149 :imaginal-delay 0 :act t :bll nil :rt -2

150 :motor-feature-prep-time 0.001

151 :motor-initiation-time 0.05

152 :motor-burst-time 0.001

153)

154

155 ; --

156 ; DECLARATIVE MEMORY

157 ; --

158

159 ; Define chunk types

160 (chunk-type model-state state token line-num response resp-idx resp-char

161 last-x last-y trace-line trace-col trace-ctx trace-name trace-call trace-val

162 trace-def orig-def last-ctx)

54

163

164 ; Details of a line of code. A missing chunk for a line forces all tokens

165 ; to be read.

166 (chunk-type line-info line-num)

167

168 ; Value or reference for a variable

169 (chunk-type variable-info

170 context ; function name or "" for global

171 name ; variable name

172 call-idx ; index of current function call

173 def-num ; index of variable definition in context

174 has-value ; :yes if the variable’s value is in memory, :no otherwise

175 ref-context ; :empty or context of source variable

176 ref-name ; :empty or name of source variable

177 ref-call ; :empty or function call index of source variable

178 ref-def ; :empty or index of source variable definition

179 val-line ; :empty or line number of literal value

180 val-col ; :empty or column offset of literal value

181)

182

183 ; Knowledge of binary sums, differences, products, etc.

184 (chunk-type sum-result first second)

185 (chunk-type diff-result first second)

186 (chunk-type prod-result first second)

187 (chunk-type and-result first second)

188 (chunk-type less-than-result first second)

189 (chunk-type greater-than-result first second)

190

191 (chunk-type (trace-location (:include visual-location)) context name trace-line trace-col)

192

193 ; Add sums from -10 to 10

194 (add-dm-fct

195 (loop for i from -10 to 10

196 append (loop for j from -10 to 10

197 collect (list (intern (string-upcase (format nil "sum-~a-~a" i j)))

198 ’isa ’sum-result

199 ’first i

200 ’second j))))

201

202 ; Add subtractions from 0 to 10

203 (add-dm-fct

55

204 (loop for i from 0 to 10

205 append (loop for j from 0 to 10

206 collect (list (intern (string-upcase (format nil "diff-~a-~a" i j)))

207 ’isa ’diff-result

208 ’first i

209 ’second j))))

210

211 ; Add products from -10 to 20

212 (add-dm-fct

213 (loop for i from -10 to 20

214 append (loop for j from -10 to 20

215 collect (list (intern (string-upcase (format nil "prod-~a-~a" i j)))

216 ’isa ’prod-result

217 ’first i

218 ’second j))))

219

220 ; Add less-than comparisons from -10 to 10

221 (add-dm-fct

222 (loop for i from -10 to 10

223 append (loop for j from -10 to 10

224 collect (list (intern (string-upcase (format nil "less-than-~a-~a" i j)))

225 ’isa ’less-than-result

226 ’first i

227 ’second j))))

228

229 ; Add greater-than comparisons from -10 to 10

230 (add-dm-fct

231 (loop for i from -10 to 10

232 append (loop for j from -10 to 10

233 collect (list (intern (string-upcase (format nil "greater-than-~a-~a" i j)))

234 ’isa ’greater-than-result

235 ’first i

236 ’second j))))

237

238 ; Add binary ANDs

239 (add-dm-fct

240 (loop for a in ’(t nil)

241 for x = (if a ’True ’False)

242 append (loop for b in ’(t nil)

243 for y = (if b ’True ’False)

244 collect (list (intern (string-upcase (format nil "and-~a-~a" x y)))

56

245 ’isa ’and-result

246 ’first x

247 ’second y))))

248

249 ; Add visual locations of variables

250 (add-dm-fct

251 (list

252 ‘(trace-value-4-8

253 isa trace-location screen-x ,(col-to-x 8) screen-y ,(line-to-y 4)

254 trace-line 4 trace-col 8)

255 ‘(trace-value-4-15

256 isa trace-location screen-x ,(col-to-x 15) screen-y ,(line-to-y 4)

257 trace-line 4 trace-col 15)

258 ‘(trace-value-4-22

259 isa trace-location screen-x ,(col-to-x 22) screen-y ,(line-to-y 4)

260 trace-line 4 trace-col 22)

261))

262

263 (add-dm

264 (state isa chunk)

265

266 ; Add chunks for static model states

267 (start isa chunk)

268 (finish-exp isa chunk)

269

270 (find-next-token isa chunk)

271 (search-for-token isa chunk)

272 (attend-to-token isa chunk)

273 (read-or-remember-line isa chunk)

274 (retrieve-line-result isa chunk)

275

276 (check-goal-stack isa chunk)

277

278 ; Location of output box

279 (output-box-location isa visual-location

280 screen-x 1115 screen-y 80

281 width 340 height 270

282 color white)

283

284 ; Add chunks for dynamic model states

285 (link-to-value-f-x-L4-C8-0-1 isa chunk)

57

286 (compute-prod-line-4-1-1 isa chunk)

287 (compute-sum-line-2-2-1 isa chunk)

288 (compute-prod-line-4-2-1 isa chunk)

289 (compute-sum-line-2-1-1 isa chunk)

290 (compute-sum-line-2-3-1 isa chunk)

291 (do-read-line-2-f-x-3 isa chunk)

292 (do-read-line-2-f-x-2 isa chunk)

293 (do-read-line-2-f-x-1 isa chunk)

294 (link-to-value-f-x-L4-C15-1-1 isa chunk)

295 (link-to-value-f-x-L4-C22-2-1 isa chunk)

296

297 ; Create initial goal

298 (goal isa model-state state check-goal-stack line-num 1))

299

300 ; --

301 ; PRODUCTIONS

302 ; --

303

304 ; Try to remember details of line from memory

305 (p read-or-remember-line

306 =goal>

307 isa model-state

308 state read-or-remember-line

309 line-num =line-num

310 ==>

311 +retrieval>

312 isa line-info

313 line-num =line-num

314 =goal>

315 state retrieve-line-result

316

317 !output! (retrieve line =line-num)

318)

319

320 ; Line details remembered, continue on without reading

321 (p retrieve-line-success

322 =goal>

323 isa model-state

324 state retrieve-line-result

325 =retrieval>

326 isa line-info

58

327 ==>

328 =goal>

329 state check-goal-stack

330)

331

332 ; Unable to remember line, read each token before continuing

333 (p retrieve-line-failed

334 =goal>

335 isa model-state

336 state retrieve-line-result

337 line-num =line-num

338 ?retrieval>

339 state error

340 ==>

341 =goal>

342 state find-next-token

343 !output! (Reading line =line-num)

344)

345

346 ; --

347

348 ; Shift visual attention to the next visual token

349 (p shift-attention-to-line

350 =goal>

351 isa model-state

352 state shift-attention-to-line

353 =visual-location>

354 isa visual-location

355 screen-x =x

356 screen-y =y

357 ?visual>

358 state free

359 ==>

360 +visual>

361 isa move-attention

362 screen-pos =visual-location

363 =goal>

364 state attend-first-token

365 last-x =x

366 last-y =y

367)

59

368

369 ; Attend to the first token on a line, try to remember

370 ; the line’s details.

371 (p attend-first-token

372 =goal>

373 isa model-state

374 state attend-first-token

375 =visual>

376 isa text

377 value =token

378 ==>

379 =goal>

380 state read-or-remember-line

381 token =token

382 !output! (read token =token)

383)

384

385 ; Shift visual attention to the next visual token

386 (p search-for-token

387 =goal>

388 isa model-state

389 state search-for-token

390 =visual-location>

391 isa visual-location

392 screen-x =x

393 screen-y =y

394 ?visual>

395 state free

396 ==>

397 +visual>

398 isa move-attention

399 screen-pos =visual-location

400 =goal>

401 state attend-to-token

402 last-x =x

403 last-y =y

404)

405

406 ; Extract the text from the attended token

407 (p attend-encoding-token

408 =goal>

60

409 isa model-state

410 state attend-to-token

411 =visual>

412 isa text

413 value =token

414 ==>

415 =goal>

416 state find-next-token

417 token =token

418 !output! (read token =token)

419)

420

421 ; Look for the next token to the right

422 (p find-next-token

423 =goal>

424 isa model-state

425 state find-next-token

426 ==>

427 +visual-location>

428 isa visual-location

429 kind text

430 ; Don’t attend to the continue button

431 < screen-x 1115

432 > screen-x current

433 screen-x lowest

434 screen-y current

435 =goal>

436 state search-for-token

437 token nil

438)

439

440 ; Finished reading the current line, record the details

441 ; in memory for later.

442 (p no-more-tokens-on-line

443 =goal>

444 isa model-state

445 state search-for-token

446 line-num =line-num

447 ?visual-location>

448 state error

449 ==>

61

450 =goal>

451 state check-goal-stack

452 !output! (Done reading line =line-num)

453)

454

455 ; Commit the details of the current line to memory

456 (p remember-line

457 =goal>

458 isa model-state

459 state remember-line

460 line-num =line-num

461 ?imaginal>

462 state free

463 ==>

464 +imaginal>

465 isa line-info

466 line-num =line-num

467 =goal>

468 state check-goal-stack

469 !output! (remembering line =line-num)

470)

471

472 ; --

473

474 ; Execute the next goal on the stack (done if no goals left)

475 (p check-goal-stack

476 =goal>

477 isa model-state

478 state check-goal-stack

479 ==>

480 =goal>

481 state =state2

482

483 ; Crucial that we force imaginal to clear.

484 ; Otherwise the only thing that will clear it is a new chunk.

485 -imaginal>

486

487 !bind! =state2 (car *goal-stack*)

488 !eval! (setf *goal-stack* (cdr *goal-stack*))

489 !output! (Next goal is =state2)

490)

62

491

492 ; No goals left - experiment is over

493 ; Find the continue button and move hand to the mouse

494 (p find-continue-button

495 =goal>

496 isa model-state

497 state nil

498 ?manual>

499 state free

500 ==>

501 +visual-location>

502 isa visual-location

503 kind oval

504 +manual>

505 isa hand-to-mouse

506 =goal>

507 state click-continue-1

508)

509

510 ; Look at the continue button

511 (p click-continue-1

512 =goal>

513 isa model-state

514 state click-continue-1

515 =visual-location>

516 isa visual-location

517 screen-x =x

518 screen-y =y

519 ?visual>

520 state free

521 ?manual>

522 state free

523 ==>

524 +visual>

525 isa move-attention

526 screen-pos =visual-location

527 +manual>

528 isa move-cursor

529 loc =visual-location

530 =goal>

531 state click-continue-2

63

532)

533

534 ; Click the continue button

535 (p click-continue-2

536 =goal>

537 isa model-state

538 state click-continue-2

539 ?visual>

540 state free

541 ?manual>

542 state free

543 ==>

544 +manual>

545 isa click-mouse

546 =goal>

547 state done

548)

549

550

551 ; Report amount of time taken to complete the experiment

552 (p experiment-is-over

553 =goal>

554 isa model-state

555 state done

556 ?manual>

557 state free

558 ==>

559 -goal>

560

561 !bind! =time (mp-time-ms)

562 !output! (Trial completed at =time)

563)

564

565 ; --

566

567 ; Prepare to type a sequence of characters

568 (p start-typing-response

569 =goal>

570 isa model-state

571 state type-response

572 ==>

64

573 =goal>

574 state typing-response

575 response =response

576 resp-idx 0

577 resp-char =resp-char

578

579 !bind! =response (car *responses*)

580 !bind! =resp-char (actr-key (aref =response 0))

581 !eval! (setf *responses* (cdr *responses*))

582 !output! (Typing =response)

583)

584

585 ; Type the next character

586 (p typing-response

587 =goal>

588 isa model-state

589 state typing-response

590 response =response

591 resp-idx =resp-idx

592 - resp-char nil

593 resp-char =resp-char

594 ?manual>

595 state free

596 ==>

597 +manual>

598 isa press-key

599 key =resp-char

600 =goal>

601 state typing-response

602 resp-idx =next-idx

603 resp-char =next-char

604

605 !bind! =next-idx (+ 1 =resp-idx)

606 !bind! =next-char (if (< =next-idx (length =response)) (actr-key (aref =response =next-idx)) nil)

607 !bind! =time (mp-time-ms)

608 !output! (Typed =resp-char at =time)

609)

610

611 ; No more characters to type

612 (p done-typing-response

613 =goal>

65

614 isa model-state

615 state typing-response

616 resp-char nil

617 ==>

618 =goal>

619 state check-goal-stack

620)

621

622 ; Look at the output box

623 (p fixate-output-box

624 =goal>

625 isa model-state

626 state fixate-output-box

627 ?visual>

628 state free

629 ==>

630 +visual>

631 isa move-attention

632 screen-pos output-box-location

633 =goal>

634 state fixating-output-box

635)

636

637 ; Wait for output box to be fixated

638 (p output-box-fixated

639 =goal>

640 isa model-state

641 state fixating-output-box

642 ?visual>

643 state free

644 ==>

645 =goal>

646 state check-goal-stack

647)

648

649 ; Find the visual location that was being

650 ; fixated before the output box.

651 (p return-from-output-box

652 =goal>

653 isa model-state

654 state return-from-output-box

66

655 last-x =last-x

656 last-y =last-y

657 ==>

658 +visual-location>

659 isa visual-location

660 screen-x =last-x

661 screen-y =last-y

662 =goal>

663 state return-from-output-box-move

664

665 !output! (Returning to =last-x =last-y)

666)

667

668 ; Move eyes to the previous location

669 (p return-from-output-box-move

670 =goal>

671 isa model-state

672 state return-from-output-box-move

673 =visual-location>

674 isa visual-location

675 screen-x =x

676 screen-y =y

677 ?visual>

678 state free

679 ==>

680 +visual>

681 isa move-attention

682 screen-pos =visual-location

683 =goal>

684 state return-from-output-box-finish

685)

686

687 ; Check for the next goal

688 (p return-from-output-box-finish

689 =goal>

690 isa model-state

691 state return-from-output-box-finish

692 ?visual>

693 state free

694 ==>

695 =goal>

67

696 state check-goal-stack

697)

698

699 ; --

700

701 ;; An explicit value was not found for the variable.

702 ;; Try to find a reference or location in declarative memory.

703 (p recalling-variable-no-value

704 =goal>

705 isa model-state

706 state recalling-variable

707 trace-ctx =trace-ctx

708 trace-name =trace-name

709 trace-call =trace-call

710 trace-def =trace-def

711 ?retrieval>

712 state error

713 ==>

714 +retrieval>

715 isa variable-info

716 context =trace-ctx

717 name =trace-name

718 call-idx =trace-call

719 def-num =trace-def

720 has-value :no

721 =goal>

722 state recalling-variable-no-value

723

724 !output! (Recalling location or reference for =trace-name in context =trace-ctx call =trace-call def =trace-def)

725)

726

727 ;; No location or reference was found for the variable.

728 ;; Try to find a previous definition in the current context.

729 (p recalling-variable-no-ref-or-loc

730 =goal>

731 isa model-state

732 state recalling-variable-no-value

733 trace-ctx =trace-ctx

734 trace-name =trace-name

735 trace-call =trace-call

736 trace-def =trace-def

68

737 > trace-def 0

738 ?retrieval>

739 state error

740 ==>

741 +retrieval>

742 isa variable-info

743 context =trace-ctx

744 name =trace-name

745 call-idx =trace-call

746 def-num =next-def-num

747 has-value :yes

748 =goal>

749 state recalling-variable

750 trace-def =next-def-num

751

752 ; Previous definition

753 !bind! =next-def-num (- =trace-def 1)

754 !output! (Trying again with =trace-name in context =trace-ctx call =trace-call def =next-def-num)

755)

756

757 (p recalling-variable-change-context

758 =goal>

759 isa model-state

760 state recalling-variable-no-value

761 trace-ctx =trace-ctx

762 trace-name =trace-name

763 trace-ctx =trace-ctx

764 last-ctx =last-ctx

765 <= trace-def 0

766 ?retrieval>

767 state error

768 ==>

769 +retrieval>

770 isa variable-info

771 context =last-ctx

772 name =trace-name

773 has-value :yes

774 =goal>

775 state recalling-variable

776

777 !output! (Changing context for =trace-name from =trace-ctx to =last-ctx)

69

778)

779

780 ;; Got a reference to another variable (possibly in a different context).

781 ;; Try to retrieve a value, reference, or location for *that* variable.

782 (p recalling-variable-got-reference

783 =goal>

784 isa model-state

785 state recalling-variable-no-value

786 =retrieval>

787 isa variable-info

788 has-value :no

789 ref-context =ref-context

790 ref-name =ref-name

791 ref-call =ref-call

792 ref-def =ref-def

793 val-line :empty

794 call-idx =call-idx

795 ==>

796 +retrieval>

797 isa variable-info

798 context =ref-context

799 name =ref-name

800 call-idx =ref-call

801 def-num =ref-def

802 =goal>

803 state recalling-variable-no-value

804

805 !output! (Following variable reference to =ref-name in context =ref-context call =ref-call def =ref-def)

806)

807

808 ;; Got a location (line/column) for a variable’s value.

809 ;; Recall the associated visual location, and look there.

810 (p recalling-variable-got-location

811 =goal>

812 isa model-state

813 state recalling-variable-no-value

814 trace-val =trace-val

815 =retrieval>

816 isa variable-info

817 has-value :no

818 def-num =def-num

70

819 ref-context :empty

820 val-line =val-line

821 val-col =val-col

822 ==>

823 +retrieval>

824 isa trace-location

825 trace-line =val-line

826 trace-col =val-col

827 =goal>

828 state trace-variable-remember

829 trace-line =val-line

830 trace-col =val-col

831 trace-def =def-num

832

833 ; Slip an extra goal into the stack to write the

834 ; variable’s value after tracing.

835 !eval! (setf *goal-stack*

836 (append (list ’trace-variable-write) *goal-stack*))

837

838 !output! (Need to trace to line =val-line col =val-col with write =trace-val)

839)

840

841 ; Remembered the variable’s trace location. Find it.

842 (p trace-variable-remember

843 =goal>

844 isa model-state

845 state trace-variable-remember

846 =retrieval>

847 isa trace-location

848 trace-line =trace-line

849 trace-col =trace-col

850 ?visual>

851 state free

852 ==>

853 +visual-location>

854 isa visual-location

855 :nearest =retrieval

856 =goal>

857 state trace-variable-move

858

859 !output! (Preparing trace to line =trace-line col =trace-col)

71

860)

861

862 ; Move the eyes to the trace location

863 (p trace-variable-move

864 =goal>

865 isa model-state

866 state trace-variable-move

867 trace-line =trace-line

868 trace-col =trace-col

869 =visual-location>

870 isa visual-location

871 ?visual>

872 state free

873 ==>

874 +visual>

875 isa move-attention

876 screen-pos =visual-location

877 =goal>

878 state trace-variable-moving

879

880 !output! (Tracing to line =trace-line col =trace-col)

881)

882

883 ; Start reading at the current location. Reading

884 ; will proceed to the end of the line, and then

885 ; the goal stack will be checked.

886 (p trace-variable-moving

887 =goal>

888 isa model-state

889 state trace-variable-moving

890 trace-line =trace-line

891 ?visual>

892 state free

893 ==>

894 =goal>

895 state find-next-token

896

897 !output! (Reading line =trace-line)

898)

899

900 ; Write the value of the traced variable to memory.

72

901 ; If it’s remembered next time, the trace will be

902 ; avoided.

903 (p trace-variable-write

904 =goal>

905 isa model-state

906 state trace-variable-write

907 trace-ctx =trace-ctx

908 trace-name =trace-name

909 trace-call =trace-call

910 trace-line =trace-line

911 trace-col =trace-col

912 trace-val =trace-val

913 orig-def =orig-def

914 ?imaginal>

915 state free

916 ==>

917 +imaginal>

918 isa variable-info

919 context =trace-ctx

920 name =trace-name

921 call-idx =trace-call

922 def-num =orig-def

923 has-value =trace-val

924 ref-context :empty

925 ref-name :empty

926 ref-call :empty

927 ref-def :empty

928 val-line =trace-line

929 val-col =trace-col

930 =goal>

931 state check-goal-stack

932

933 !output! (Wrote traced variable =trace-ctx =trace-name call =trace-call def =orig-def with value =trace-val)

934)

935

936 ; --

937 ; DYNAMIC PRODUCTIONS

938 ; --

939

940

941 ; Shift visual attention to a specific line

73

942 (p go-to-line-1

943 =goal>

944 isa model-state

945 state go-to-line-1

946 ==>

947 +visual-location>

948 isa visual-location

949 screen-y =screen-y

950 screen-x lowest

951 =goal>

952 state shift-attention-to-line

953 line-num 1

954

955 !bind! =screen-y (line-to-y 1)

956)

957

958

959 ; Shift visual attention to a specific line

960 (p go-to-line-2

961 =goal>

962 isa model-state

963 state go-to-line-2

964 ==>

965 +visual-location>

966 isa visual-location

967 screen-y =screen-y

968 screen-x lowest

969 =goal>

970 state shift-attention-to-line

971 line-num 2

972

973 !bind! =screen-y (line-to-y 2)

974)

975

976

977 ; Shift visual attention to a specific line

978 (p go-to-line-3

979 =goal>

980 isa model-state

981 state go-to-line-3

982 ==>

74

983 +visual-location>

984 isa visual-location

985 screen-y =screen-y

986 screen-x lowest

987 =goal>

988 state shift-attention-to-line

989 line-num 3

990

991 !bind! =screen-y (line-to-y 3)

992)

993

994

995 ; Shift visual attention to a specific line

996 (p go-to-line-4

997 =goal>

998 isa model-state

999 state go-to-line-4

1000 ==>

1001 +visual-location>

1002 isa visual-location

1003 screen-y =screen-y

1004 screen-x lowest

1005 =goal>

1006 state shift-attention-to-line

1007 line-num 4

1008

1009 !bind! =screen-y (line-to-y 4)

1010)

1011

1012

1013 ; Write the variable’s value to memory by

1014 ; placing a chunk in the imaginal buffer and

1015 ; letting it get flushed.

1016 (p link-to-value-f-x-L4-C8-0-1

1017 =goal>

1018 isa model-state

1019 state link-to-value-f-x-L4-C8-0-1

1020 ?imaginal>

1021 state free

1022 ==>

1023 +imaginal>

75

1024 isa variable-info

1025 context "f"

1026 name "x"

1027 call-idx 0

1028 def-num 0

1029 ref-context :empty

1030 ref-name :empty

1031 ref-call :empty

1032 ref-def :empty

1033 val-line 4

1034 val-col 8

1035 has-value :no

1036 =goal>

1037 state check-goal-stack

1038 !output! (Wrote variable f x 0)

1039)

1040

1041

1042 ; Try to recall the variable’s value from memory.

1043 ; A retrieval failure may force a trace.

1044 (p do-read-line-2-f-x-1-retrieve

1045 =goal>

1046 isa model-state

1047 state do-read-line-2-f-x-1

1048 ==>

1049 +retrieval>

1050 isa variable-info

1051 context "f"

1052 name "x"

1053 call-idx 0

1054 def-num 0

1055 has-value :yes

1056 =goal>

1057 state recalling-variable

1058 trace-ctx "f"

1059 trace-name "x"

1060 trace-call 0

1061 trace-val :yes

1062 trace-def 0

1063 orig-def 0

1064 last-ctx ""

76

1065

1066 !output! (Recalling variable value for "x" in context "f" call 0 def 0)

1067)

1068

1069 ; Successfully recalled the variable’s value.

1070 ; Proceed with the next goal.

1071 (p do-read-line-2-f-x-1-success

1072 =goal>

1073 isa model-state

1074 state recalling-variable

1075 =retrieval>

1076 isa variable-info

1077 has-value :yes

1078 ==>

1079 =goal>

1080 state check-goal-stack

1081)

1082

1083

1084 ; Recall the answer for a sum, product, etc.

1085 ; This should never fail.

1086 (p compute-sum-line-2-1-1

1087 =goal>

1088 isa model-state

1089 state compute-sum-line-2-1-1

1090 ==>

1091 +retrieval>

1092 isa sum-result

1093 first 1

1094 second 4

1095 =goal>

1096 state compute-sum-line-2-1-1-done

1097 !output! (Computing sum of 1 4)

1098)

1099

1100 ; Successfully remembered the answer.

1101 ; Proceed with the next goal.

1102 (p compute-sum-line-2-1-1-done

1103 =goal>

1104 isa model-state

1105 state compute-sum-line-2-1-1-done

77

1106 =retrieval>

1107 isa sum-result

1108 first 1

1109 second 4

1110 ==>

1111 =goal>

1112 state check-goal-stack

1113)

1114

1115

1116 ; Write the variable’s value to memory by

1117 ; placing a chunk in the imaginal buffer and

1118 ; letting it get flushed.

1119 (p link-to-value-f-x-L4-C15-1-1

1120 =goal>

1121 isa model-state

1122 state link-to-value-f-x-L4-C15-1-1

1123 ?imaginal>

1124 state free

1125 ==>

1126 +imaginal>

1127 isa variable-info

1128 context "f"

1129 name "x"

1130 call-idx 1

1131 def-num 0

1132 ref-context :empty

1133 ref-name :empty

1134 ref-call :empty

1135 ref-def :empty

1136 val-line 4

1137 val-col 15

1138 has-value :no

1139 =goal>

1140 state check-goal-stack

1141 !output! (Wrote variable f x 1)

1142)

1143

1144

1145 ; Try to recall the variable’s value from memory.

1146 ; A retrieval failure may force a trace.

78

1147 (p do-read-line-2-f-x-2-retrieve

1148 =goal>

1149 isa model-state

1150 state do-read-line-2-f-x-2

1151 ==>

1152 +retrieval>

1153 isa variable-info

1154 context "f"

1155 name "x"

1156 call-idx 1

1157 def-num 0

1158 has-value :yes

1159 =goal>

1160 state recalling-variable

1161 trace-ctx "f"

1162 trace-name "x"

1163 trace-call 1

1164 trace-val :yes

1165 trace-def 0

1166 orig-def 0

1167 last-ctx ""

1168

1169 !output! (Recalling variable value for "x" in context "f" call 1 def 0)

1170)

1171

1172 ; Successfully recalled the variable’s value.

1173 ; Proceed with the next goal.

1174 (p do-read-line-2-f-x-2-success

1175 =goal>

1176 isa model-state

1177 state recalling-variable

1178 =retrieval>

1179 isa variable-info

1180 has-value :yes

1181 ==>

1182 =goal>

1183 state check-goal-stack

1184)

1185

1186

1187 ; Recall the answer for a sum, product, etc.

79

1188 ; This should never fail.

1189 (p compute-sum-line-2-2-1

1190 =goal>

1191 isa model-state

1192 state compute-sum-line-2-2-1

1193 ==>

1194 +retrieval>

1195 isa sum-result

1196 first 0

1197 second 4

1198 =goal>

1199 state compute-sum-line-2-2-1-done

1200 !output! (Computing sum of 0 4)

1201)

1202

1203 ; Successfully remembered the answer.

1204 ; Proceed with the next goal.

1205 (p compute-sum-line-2-2-1-done

1206 =goal>

1207 isa model-state

1208 state compute-sum-line-2-2-1-done

1209 =retrieval>

1210 isa sum-result

1211 first 0

1212 second 4

1213 ==>

1214 =goal>

1215 state check-goal-stack

1216)

1217

1218

1219 ; Write the variable’s value to memory by

1220 ; placing a chunk in the imaginal buffer and

1221 ; letting it get flushed.

1222 (p link-to-value-f-x-L4-C22-2-1

1223 =goal>

1224 isa model-state

1225 state link-to-value-f-x-L4-C22-2-1

1226 ?imaginal>

1227 state free

1228 ==>

80

1229 +imaginal>

1230 isa variable-info

1231 context "f"

1232 name "x"

1233 call-idx 2

1234 def-num 0

1235 ref-context :empty

1236 ref-name :empty

1237 ref-call :empty

1238 ref-def :empty

1239 val-line 4

1240 val-col 22

1241 has-value :no

1242 =goal>

1243 state check-goal-stack

1244 !output! (Wrote variable f x 2)

1245)

1246

1247

1248 ; Try to recall the variable’s value from memory.

1249 ; A retrieval failure may force a trace.

1250 (p do-read-line-2-f-x-3-retrieve

1251 =goal>

1252 isa model-state

1253 state do-read-line-2-f-x-3

1254 ==>

1255 +retrieval>

1256 isa variable-info

1257 context "f"

1258 name "x"

1259 call-idx 2

1260 def-num 0

1261 has-value :yes

1262 =goal>

1263 state recalling-variable

1264 trace-ctx "f"

1265 trace-name "x"

1266 trace-call 2

1267 trace-val :yes

1268 trace-def 0

1269 orig-def 0

81

1270 last-ctx ""

1271

1272 !output! (Recalling variable value for "x" in context "f" call 2 def 0)

1273)

1274

1275 ; Successfully recalled the variable’s value.

1276 ; Proceed with the next goal.

1277 (p do-read-line-2-f-x-3-success

1278 =goal>

1279 isa model-state

1280 state recalling-variable

1281 =retrieval>

1282 isa variable-info

1283 has-value :yes

1284 ==>

1285 =goal>

1286 state check-goal-stack

1287)

1288

1289

1290 ; Recall the answer for a sum, product, etc.

1291 ; This should never fail.

1292 (p compute-sum-line-2-3-1

1293 =goal>

1294 isa model-state

1295 state compute-sum-line-2-3-1

1296 ==>

1297 +retrieval>

1298 isa sum-result

1299 first -1

1300 second 4

1301 =goal>

1302 state compute-sum-line-2-3-1-done

1303 !output! (Computing sum of -1 4)

1304)

1305

1306 ; Successfully remembered the answer.

1307 ; Proceed with the next goal.

1308 (p compute-sum-line-2-3-1-done

1309 =goal>

1310 isa model-state

82

1311 state compute-sum-line-2-3-1-done

1312 =retrieval>

1313 isa sum-result

1314 first -1

1315 second 4

1316 ==>

1317 =goal>

1318 state check-goal-stack

1319)

1320

1321

1322 ; Recall the answer for a sum, product, etc.

1323 ; This should never fail.

1324 (p compute-prod-line-4-1-1

1325 =goal>

1326 isa model-state

1327 state compute-prod-line-4-1-1

1328 ==>

1329 +retrieval>

1330 isa prod-result

1331 first 5

1332 second 4

1333 =goal>

1334 state compute-prod-line-4-1-1-done

1335 !output! (Computing prod of 5 4)

1336)

1337

1338 ; Successfully remembered the answer.

1339 ; Proceed with the next goal.

1340 (p compute-prod-line-4-1-1-done

1341 =goal>

1342 isa model-state

1343 state compute-prod-line-4-1-1-done

1344 =retrieval>

1345 isa prod-result

1346 first 5

1347 second 4

1348 ==>

1349 =goal>

1350 state check-goal-stack

1351)

83

1352

1353

1354 ; Recall the answer for a sum, product, etc.

1355 ; This should never fail.

1356 (p compute-prod-line-4-2-1

1357 =goal>

1358 isa model-state

1359 state compute-prod-line-4-2-1

1360 ==>

1361 +retrieval>

1362 isa prod-result

1363 first 20

1364 second 3

1365 =goal>

1366 state compute-prod-line-4-2-1-done

1367 !output! (Computing prod of 20 3)

1368)

1369

1370 ; Successfully remembered the answer.

1371 ; Proceed with the next goal.

1372 (p compute-prod-line-4-2-1-done

1373 =goal>

1374 isa model-state

1375 state compute-prod-line-4-2-1-done

1376 =retrieval>

1377 isa prod-result

1378 first 20

1379 second 3

1380 ==>

1381 =goal>

1382 state check-goal-stack

1383)

1384

1385

1386 ; --

1387

1388 ; All pre-existing DM facts (sums, etc.) are assumed to be well rehearsed

1389 (set-all-base-levels 100000 -1000)

1390 (goal-focus goal)

1391)

84

B Appendix - Computer Example

1 ;;; Author: Michael Hansen

2 ;;; Created on 2015-03-06 14:46:21.715348

3

4 (in-package :cdo)

5

6 ;;; Constraints added by default

7 (defparameter *computer-configuration-default-constraints* ’())

8

9 ;;; Instance parameters

10 (defparameter *components-n* 8)

11 (defparameter *memory-type-boost* 5)

12

13 ;;; --

14

15 (defun print-component (comp)

16 (let* ((performance (v@ (comp) performance))

17 (comp-type (name^ (e@ comp component-type)))

18 (vendor (name^ (e@ comp component-details vendor vendor-choice)))

19 (cost (v@ (comp component-details product-info) cost))

20 (performance (v@ (comp component-details product-info) performance))

21 (model (value-of (v@ (comp component-details product-info) model)))

22 (used (name^ (e@ comp component-role)))

23 (mem-type (when (equale (e@ comp component-type) memory)

24 (name^ (e@ comp component-type memory memory-type))))

25)

26 (with-output-to-string

27 (str)

28 (format str "~a [~a] ~a ~a~a (c:~a, p:~a)"

29 (if (eq used ’used) "*" " ")

30 comp-type vendor

31 (if (ground? model) model "Unknown Model")

32 (cond

33 ((eq mem-type ’type-a) ", A")

34 ((eq mem-type ’type-b) ", B")

35 (t ""))

36 (if (ground? cost) cost "?")

37 (if (ground? performance) performance "?"))

38)

39))

85

40

41 (defun print-configuration (cfg)

42 (let* ((cost (v@ (cfg) cost))

43 (performance (v@ (cfg) performance))

44 (components (entities^ (n@ cfg components)))

45)

46 (with-output-to-string

47 (str)

48 (format str "Configuration (cost:~a, perf:~a):~%"

49 (if (ground? cost) cost "?")

50 (if (ground? performance) performance "?"))

51 (dolist (comp components)

52 (format str " ~a~%" (print-component comp))

53)

54 (format str "~%")

55)

56))

57

58 ;;; ==

59 ;;; Structure

60 ;;; ==

61

62 ;;; Top-level entities

63 (defun computer-configuration_ (&rest constraints)

64 (multiple-value-bind (local-constraints relayed-constraints)

65 (isolate-constraints :computer-configuration (append constraints *computer-configuration-default-constraints*))

66 ‘(let* (

67 (components

68 ,(apply #’dm ’components *components-n* #’component_ relayed-constraints))

69

70 (computer-configuration

71 (de ’computer-configuration

72 :r (components)

73 :v (,(dv ’cost (an-integerv)) ,(dv ’performance (an-integerv)))

74)

75))

76 ;;

77 ,@local-constraints

78 ;;

79 computer-configuration)))

80

86

81 (defun component_ (n &rest constraints)

82 (multiple-value-bind (local-constraints relayed-constraints)

83 (isolate-constraints :component constraints n)

84 ‘(let* (

85 (component-details

86 (da ’component-details

87 (de ’product-info

88 :v (,(dv ’cost (an-integerv)) ,(dv ’performance (an-integerv)) ,(dv ’model (a-stringv)))

89)

90 ,(apply #’vendor_ relayed-constraints)

91))

92 (component-role

93 (ds ’component-role

94 (de ’used

95)

96 (de ’not-used

97)

98))

99 (component-type

100 (ds ’component-type

101 ,(apply #’memory_ relayed-constraints)

102 (de ’graphics

103)

104 (de ’sound

105)

106))

107

108 (component

109 (de ’component

110 :r (component-details component-role component-type)

111)

112))

113 ;;

114 ,@local-constraints

115 ;;

116 component)))

117

118 (defun vendor_ (&rest constraints)

119 (multiple-value-bind (local-constraints relayed-constraints)

120 (isolate-constraints :vendor constraints)

121 ‘(let* (

87

122 (vendor-choice

123 (ds ’vendor-choice

124 (de ’invideo

125)

126 (de ’slamsong

127)

128 (de ’tortoise-bay

129)

130))

131

132 (vendor

133 (de ’vendor

134 :r (vendor-choice)

135)

136))

137 ;;

138 ,@local-constraints

139 ;;

140 vendor)))

141

142 (defun memory_ (&rest constraints)

143 (multiple-value-bind (local-constraints relayed-constraints)

144 (isolate-constraints :memory constraints)

145 ‘(let* (

146 (memory-type

147 (ds ’memory-type

148 (de ’type-a

149)

150 (de ’type-b

151)))

152

153 (memory

154 (de ’memory

155 :r (memory-type)

156)

157))

158 ;;

159 ,@local-constraints

160 ;;

161 memory)))

162

88

163

164 ;;; ---

165

166 ;;; Function to count solutions

167 (defun computer-configuration-counter_ (&rest constraints)

168 (multiple-value-bind (local-constraints relayed-constraints)

169 (isolate-constraints :computer-configuration constraints)

170 ‘(let ((count 0))

171 (for-effects

172 (let ((return-value

173 (progn

174 (let* (

175 (components

176 ,(apply #’dm ’components *components-n* #’component_ relayed-constraints))

177

178 (computer-configuration

179 (de ’computer-configuration

180 :r (components)

181 :v (,(dv ’cost (an-integerv)) ,(dv ’performance (an-integerv)))

182)

183))

184 ;;

185 ,@local-constraints

186 ;;

187 computer-configuration))))

188 return-value

189 (global

190 (setf count (1+ count)))))

191 count)))

192

193 ;;; ==

194 ;;; Constraints

195 ;;; ==

196

197 (define-ma-constraint-fn component-active (comp)

198 (equale (e@ comp component-role) used))

199

200 (define-ma-constraint-fn has-graphics (comp)

201 (andv

202 (equale (e@ comp component-role) used)

203 (equale (e@ comp component-type) graphics)))

89

204

205 (define-ma-constraint-fn has-sound (comp)

206 (andv

207 (equale (e@ comp component-role) used)

208 (equale (e@ comp component-type) sound)))

209

210 (define-ma-constraint-fn has-memory (comp)

211 (andv

212 (equale (e@ comp component-role) used)

213 (equale (e@ comp component-type) memory)))

214

215 (define-constraint max-4-active

216 :computer-configuration

217 (at-most-ma 4 component-active (n@ components)))

218

219 (define-constraint only-1-graphics-card

220 :computer-configuration

221 (exactly-ma 1 has-graphics (n@ components)))

222

223 (define-constraint only-1-sound-card

224 :computer-configuration

225 (exactly-ma 1 has-sound (n@ components)))

226

227 (define-constraint 1-or-2-memory

228 :computer-configuration

229 (at-least-ma 1 has-memory (n@ components)))

230

231

232 ;; Constrain product types by vendor

233 (define-constraint vendors-types

234 :component

235 (let* ((vendor-choice (e@ component component-details vendor vendor-choice))

236 (component-type (e@ component component-type))

237)

238 (cond

239 ((equale vendor-choice invideo) (equale component-type graphics))

240 ((equale vendor-choice tortoise-bay) (equale component-type sound))

241 ((equale vendor-choice slamsong) (orv

242 (equale component-type graphics)

243 (equale component-type sound)

244 (equale component-type memory)))

90

245 (t t)

246)

247))

248

249 ;; Sum component costs for a configuration

250 (define-constraint config-cost

251 :computer-configuration

252 (let ((comp-costs (mapcar (lambda (comp)

253 (ifv (equale (e@ comp component-role) used)

254 (v@ (comp component-details product-info) cost)

255 0))

256 (entities^ (n@ components))))

257)

258 (equalv (v@ (computer-configuration) cost) (applyv #’+v comp-costs))

259)

260)

261

262 ;; Sum component performance for a configuration (add boost for same memory types)

263 (define-constraint config-perf

264 :computer-configuration

265 (let* ((mem-count (applyv #’+v (mapcar (lambda (comp)

266 (ifv (andv

267 (equale (e@ comp component-role) used)

268 (equale (e@ comp component-type) memory))

269 1

270 0))

271 (entities^ (n@ components)))))

272 (mem-types (remove-duplicates

273 (remove ’nil

274 (mapcar (lambda (comp)

275 (ifv (andv

276 (equale (e@ comp component-role) used)

277 (equale (e@ comp component-type) memory))

278 (name^ (e@ comp component-type memory memory-type))

279 nil))

280 (entities^ (n@ components))))))

281 (mem-boost (ifv (andv (>v mem-count 1)

282 (eq (length mem-types) 1))

283 *memory-type-boost*

284 0))

285 (comp-perfs (mapcar (lambda (comp)

91

286 (ifv (equale (e@ comp component-role) used)

287 (v@ (comp component-details product-info) performance)

288 0))

289 (entities^ (n@ components))))

290)

291 (equalv (v@ (computer-configuration) performance)

292 (+v mem-boost (applyv #’+v comp-perfs)))

293)

294)

295

296

297 ;; Force zero cost

298 (define-constraint no-cost

299 :computer-configuration

300 (equalv (v@ (computer-configuration) cost) 0))

301

302

303 ;; Force new graphics card

304 (define-constraint new-graphics-card

305 :component

306 (ifv (andv

307 (equale (e@ component component-role) active)

308 (equale (e@ component component-type) graphics))

309 (>v (v@ (component component-details product-info) cost) 0)

310 t

311))

312

313 ;;; ==

314 ;;; Examples

315 ;;; ==

316

317 ;; One solution, no constraints

318

319 (print

320 (soaCDO-solutions

321 (computer-configuration_)

322 :one

323 :print-fun #’print-configuration))

324

325 ;; Configuration (cost:?, perf:?):

326 ;; * [MEMORY] INVIDEO Unknown Model, A (c:?, p:?)

92

327 ;; * [MEMORY] INVIDEO Unknown Model, A (c:?, p:?)

328 ;; * [MEMORY] INVIDEO Unknown Model, A (c:?, p:?)

329 ;; * [MEMORY] INVIDEO Unknown Model, A (c:?, p:?)

330 ;; * [MEMORY] INVIDEO Unknown Model, A (c:?, p:?)

331 ;; * [MEMORY] INVIDEO Unknown Model, A (c:?, p:?)

332 ;; * [MEMORY] INVIDEO Unknown Model, A (c:?, p:?)

333 ;; * [MEMORY] INVIDEO Unknown Model, A (c:?, p:?)

334

335 ;; --

336

337 (defparameter *available-components*

338 (list

339 ;; New components

340 (set-ma-instance-properties

341 ’(:component) ’(1)

342 :choices ’(

343 ((component component-details vendor vendor-choice) invideo)

344 ((component component-type) graphics)

345)

346

347 :variables ’(

348 (((component component-details product-info) model) "D-Force")

349 (((component component-details product-info) cost) 200)

350 (((component component-details product-info) performance) 10)

351)

352)

353

354 (set-ma-instance-properties

355 ’(:component) ’(2)

356 :choices ’(

357 ((component component-details vendor vendor-choice) slamsong)

358 ((component component-type) memory)

359 ((component component-type memory memory-type) type-b)

360)

361

362 :variables ’(

363 (((component component-details product-info) model) "DRR9")

364 (((component component-details product-info) cost) 20)

365 (((component component-details product-info) performance) 10)

366)

367)

93

368

369 (set-ma-instance-properties

370 ’(:component) ’(3)

371 :choices ’(

372 ((component component-details vendor vendor-choice) tortoise-bay)

373 ((component component-type) sound)

374)

375

376 :variables ’(

377 (((component component-details product-info) model) "Waves")

378 (((component component-details product-info) cost) 50)

379 (((component component-details product-info) performance) 10)

380)

381)

382

383 (set-ma-instance-properties

384 ’(:component) ’(4)

385 :choices ’(

386 ((component component-details vendor vendor-choice) slamsong)

387 ((component component-type) memory)

388 ((component component-type memory memory-type) type-a)

389 ;; ((component component-role) used)

390)

391

392 :variables ’(

393 (((component component-details product-info) model) "DRR7")

394 (((component component-details product-info) cost) 10)

395 (((component component-details product-info) performance) 5)

396)

397)

398

399 (set-ma-instance-properties

400 ’(:component) ’(5)

401 :choices ’(

402 ((component component-details vendor vendor-choice) invideo)

403 ((component component-type) graphics)

404)

405

406 :variables ’(

407 (((component component-details product-info) model) "B-Force")

408 (((component component-details product-info) cost) 100)

94

409 (((component component-details product-info) performance) 7)

410)

411)

412

413 ;; Existing components

414 (set-ma-instance-properties

415 ’(:component) ’(6)

416 :choices ’(

417 ((component component-details vendor vendor-choice) slamsong)

418 ((component component-type) memory)

419 ((component component-type memory memory-type) type-a)

420 ;; ((component component-role) used)

421)

422

423 :variables ’(

424 (((component component-details product-info) model) "DRR7")

425 (((component component-details product-info) cost) 0)

426 (((component component-details product-info) performance) 5)

427)

428)

429

430 (set-ma-instance-properties

431 ’(:component) ’(7)

432 :choices ’(

433 ((component component-details vendor vendor-choice) slamsong)

434 ((component component-type) sound)

435)

436

437 :variables ’(

438 (((component component-details product-info) model) "Puddle")

439 (((component component-details product-info) cost) 0)

440 (((component component-details product-info) performance) 1)

441)

442)

443

444 (set-ma-instance-properties

445 ’(:component) ’(8)

446 :choices ’(

447 ((component component-details vendor vendor-choice) slamsong)

448 ((component component-type) graphics)

449)

95

450

451 :variables ’(

452 (((component component-details product-info) model) "A-Force")

453 (((component component-details product-info) cost) 0)

454 (((component component-details product-info) performance) 2)

455)

456)))

457

458 ;; --

459

460 ;; One solution, just components

461 (print

462 (soaCDO-solutions

463 (apply #’computer-configuration_

464 (cons config-cost

465 (cons config-perf

466 *available-components*)))

467 :one

468 :print-fun #’print-configuration))

469

470 ;; Configuration (cost:380, perf:50):

471 ;; * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

472 ;; * [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

473 ;; * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

474 ;; * [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

475 ;; * [GRAPHICS] INVIDEO B-Force (c:100, p:7)

476 ;; * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

477 ;; * [SOUND] SLAMSONG Puddle (c:0, p:1)

478 ;; * [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

479

480 ;; --

481

482 (defparameter *default-constraints*

483 ‘(

484 ,config-cost

485 ,config-perf

486

487 ,max-4-active

488 ,only-1-graphics-card

489 ,only-1-sound-card

490 ,1-or-2-memory

96

491

492 ,vendors-types

493

494 ,@available-components

495))

496

497 ;; --

498

499 ;; One solution, no additonal constraints

500 (print

501 (soaCDO-solutions

502 (apply #’computer-configuration_

503 *default-constraints*)

504 :one

505 :print-fun #’print-configuration))

506

507 ;; Configuration (cost:280, perf:35):

508 ;; * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

509 ;; * [MEMORY] SLAMSONG DRR9 B (c:20, p:10)

510 ;; * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

511 ;; * [MEMORY] SLAMSONG DRR7 A (c:10, p:5)

512 ;; [GRAPHICS] INVIDEO B-Force (c:100, p:7)

513 ;; [MEMORY] SLAMSONG DRR7 A (c:0, p:5)

514 ;; [SOUND] SLAMSONG Puddle (c:0, p:1)

515 ;; [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

516

517 ;; --

518

519 ;; One solution, force no cost

520 (print

521 (soaCDO-solutions

522 (apply #’computer-configuration_

523 (cons no-cost *default-constraints*))

524 :one

525 :print-fun #’print-configuration))

526

527 ;; Configuration (cost:0, perf:8):

528 ;; [GRAPHICS] INVIDEO D-Force (c:200, p:10)

529 ;; [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

530 ;; [SOUND] TORTOISE-BAY Waves (c:50, p:10)

531 ;; [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

97

532 ;; [GRAPHICS] INVIDEO B-Force (c:100, p:7)

533 ;; * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

534 ;; * [SOUND] SLAMSONG Puddle (c:0, p:1)

535 ;; * [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

536

537 ;; --

538

539 (defun performance-utility (sol)

540 (value-of (v@ (sol) performance)))

541

542 ;; Best performance

543 (multiple-value-bind (best-solutions best-value util-values)

544 (soaCDO-solutions

545 (apply #’computer-configuration_

546 *default-constraints*)

547 :best

548 :utility-fun #’performance-utility

549 :objective-fun #’>

550 :print-fun #’print-configuration)

551

552 (print best-solutions))

553

554 ;; Configuration (cost:260, perf:35):

555 ;; * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

556 ;; [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

557 ;; * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

558 ;; * [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

559 ;; [GRAPHICS] INVIDEO B-Force (c:100, p:7)

560 ;; * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

561 ;; [SOUND] SLAMSONG Puddle (c:0, p:1)

562 ;; [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

563

564 ;; Configuration (cost:270, perf:35):

565 ;; * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

566 ;; * [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

567 ;; * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

568 ;; [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

569 ;; [GRAPHICS] INVIDEO B-Force (c:100, p:7)

570 ;; * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

571 ;; [SOUND] SLAMSONG Puddle (c:0, p:1)

572 ;; [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

98

573

574 ;; Configuration (cost:280, perf:35):

575 ;; * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

576 ;; * [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

577 ;; * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

578 ;; * [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

579 ;; [GRAPHICS] INVIDEO B-Force (c:100, p:7)

580 ;; [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

581 ;; [SOUND] SLAMSONG Puddle (c:0, p:1)

582 ;; [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

583

584 ;; --

585

586 ;; Highest performance (first), lowest cost (second)

587 (defun better-2 (a b)

588 (cond

589 ((eq (first a) (first b)) (< (second a) (second b)))

590 (t (> (first a) (first b)))))

591

592 (defun performance-and-cost-utility (sol)

593 (list

594 (value-of (v@ (sol) performance))

595 (value-of (v@ (sol) cost))))

596

597 ;; Best performance with lowest cost

598 (multiple-value-bind (best-solutions best-value util-values)

599 (soaCDO-solutions

600 (apply #’computer-configuration_

601 *default-constraints*)

602 :best

603 :utility-fun #’performance-and-cost-utility

604 :objective-fun #’better-2

605 :print-fun #’print-configuration)

606

607 (print best-solutions))

608

609 ;; Configuration (cost:260, perf:35):

610 ;; * [GRAPHICS] INVIDEO D-Force (c:200, p:10)

611 ;; [MEMORY] SLAMSONG DRR9, B (c:20, p:10)

612 ;; * [SOUND] TORTOISE-BAY Waves (c:50, p:10)

613 ;; * [MEMORY] SLAMSONG DRR7, A (c:10, p:5)

99

614 ;; [GRAPHICS] INVIDEO B-Force (c:100, p:7)

615 ;; * [MEMORY] SLAMSONG DRR7, A (c:0, p:5)

616 ;; [SOUND] SLAMSONG Puddle (c:0, p:1)

617 ;; [GRAPHICS] SLAMSONG A-Force (c:0, p:2)

618

619 ;; ---

100

References

[1] ACT-R Research Group. About ACT-R. http://act-r.psy.cmu.edu/about/, mar 2012.

[2] John R. Anderson. How can the human mind occur in the physical universe?, volume 3. Oxford University
Press, USA, 2007.

[3] T.J. Biggerstaff, B.G. Mitbander, and D.E. Webster. Program understanding and the concept assignment
problem. Communications of the ACM, 37(5):72–82, 1994.

[4] Jean-Marie Burkhardt, Françoise Détienne, and Susan Wiedenbeck. Object-oriented program compre-
hension: Effect of expertise, task and phase. Empirical Software Engineering, 7(2):115–156, 2002.

[5] Teresa Busjahn, Carsten Schulte, and Andreas Busjahn. Analysis of code reading to gain more insight
in program comprehension. In Proceedings of the 11th Koli Calling International Conference on Computing
Education Research, pages 1–9. ACM, 2011.

[6] Simon Cant, David Jeffery, and Brian Henderson-Sellers. A conceptual model of cognitive complexity
of elements of the programming process. Information and Software Technology, 37(7):351–362, 1995.

[7] Bob Curtis. Fifteen years of psychology in software engineering: Individual differences and cognitive
science. In Proceedings of the 7th international conference on Software engineering, pages 97–106. IEEE Press,
1984.

[8] Françoise Détienne. La compréhension de programmes informatiques par l’expert: un modéle en termes de
schémas. PhD thesis, Université Paris V. Sciences humaines, 1986.

[9] Françoise Détienne and Frank Bott. Software design–cognitive aspects. Springer Verlag, 2002.

[10] Christopher Douce. The stores model of code cognition. 2008.

[11] Christopher Douce, Paul J. Layzell, and Jim Buckley. Spatial measures of software complexity. 1999.

[12] Scott A Douglass and Saurabh Mittal. A framework for modeling and simulation of the artificial. In
Ontology, Epistemology, and Teleology for Modeling and Simulation, pages 271–317. Springer, 2013.

[13] B.D. Ehret. Learning where to look: Location learning in graphical user interfaces. In Proceedings of the
SIGCHI conference on Human factors in computing systems: Changing our world, changing ourselves, pages
211–218. ACM, 2002.

[14] Paul M Fitts and James R Peterson. Information capacity of discrete motor responses. Journal of
experimental psychology, 67(2):103, 1964.

[15] DJ Gilmore and TRG Green. The comprehensibility of programming notations. In Human-Computer
Interaction-Interact, volume 84, pages 461–464, 1985.

[16] Mark Guzdial. From science to engineering. Commun. ACM, 54(2):37–39, February 2011.

[17] Maurice H. Halstead. Elements of Software Science (Operating and programming systems series). Elsevier
Science Inc., 1977.

101

http://act-r.psy.cmu.edu/about/

[18] Philip N Johnson-Laird. Mental models. Number 6. Harvard University Press, 1986.

[19] Sonya E Keene, Dan Gerson, and David A Moon. Object-oriented programming in Common Lisp: A
programmer’s guide to CLOS, volume 8. Addison-Wesley Reading, Massachusetts, 1989.

[20] David E. Kieras and David E. Meyer. An overview of the EPIC architecture for cognition and per-
formance with application to human-computer interaction. Hum.-Comput. Interact., 12(4):391–438,
December 1997.

[21] Richard E Mayer. Cognitive aspects of learning and using a programming language. 1987.

[22] Thomas J. McCabe. A complexity measure. Software Engineering, IEEE Transactions on, (4):308–320, 1976.

[23] George A. Miller. The magical number seven, plus or minus two: some limits on our capacity for
processing information. Psychological review, 63(2):81, 1956.

[24] Chris Parnin. A cognitive neuroscience perspective on memory for programming tasks. In In the
Proceedings of the 22nd Annual Meeting of the Psychology of Programming Interest Group (PPIG). Citeseer,
2010.

[25] Keith Rayner. Eye movements in reading and information processing: 20 years of research. Psychological
bulletin, 124(3):372, 1998.

[26] Robert S. Rist. Schema creation in programming. Cognitive Science, 13(3):389–414, 1989.

[27] Dario D Salvucci. A model of eye movements and visual attention. In Proceedings of the International
Conference on Cognitive Modeling, pages 252–259, 2000.

[28] Dario D. Salvucci. Predicting the effects of in-car interface use on driver performance: An integrated
model approach. International Journal of Human-Computer Studies, 55(1):85–107, 2001.

[29] Dario D. Salvucci and N.A. Taatgen. Threaded cognition: An integrated theory of concurrent multitask-
ing. Psychological Review, 115(1):101, 2008.

[30] B. Schneiderman. Interactive interface issues. Software Psychology: Human Factors in Computer and
Information Systems, pages 216–251, 1980.

[31] S.B. Sheppard, Bob Curtis, P. Milliman, MA Borst, and T. Love. First-year results from a research
program on human factors in software engineering. In Proceedings of the National Computer Conference,
page 1021. IEEE Computer Society, 1979.

[32] Janet Siegmund, André Brechmann, Sven Apel, Christian Kästner, Jörg Liebig, Thomas Leich, and
Gunter Saake. Toward measuring program comprehension with functional magnetic resonance imaging.
In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering,
page 24. ACM, 2012.

[33] Jeffrey Mark Siskind and David Allen McAllester. Screamer: A portable efficient implementation of
nondeterministic common lisp. IRCS Technical Reports Series, page 14, 1993.

102

[34] Elliot Soloway and Kate Ehrlich. Empirical studies of programming knowledge. IEEE Transactions on
Software Engineering, (5):595–609, 1984.

[35] Guy L Steele. Common LISP: the language. Digital press, 1990.

[36] N.A. Taatgen. Dispelling the magic: Towards memory without capacity. Behavioral and Brain Sciences,
24(01):147–148, 2001.

[37] N.A. Taatgen, John R. Anderson, et al. Why do children learn to say “broke”? A model of learning the
past tense without feedback. Cognition, 86(2):123–155, 2004.

[38] L. Weissman. Psychological complexity of computer programs: an experimental methodology. ACM
Sigplan Notices, 9(6):25–36, 1974.

[39] E.J. Weyuker. Evaluating software complexity measures. IEEE Transactions on Software Engineering,
14:1357–1365, 1988.

[40] Simon White and D Sleeman. Constraint handling in common lisp. Department of Computing Science
Technical Report AUCS/TR9805, University of Aberdeen, Aberdeen, UK, 1998.

[41] Susan Wiedenbeck. Beacons in computer program comprehension. International Journal of Man-Machine
Studies, 25(6):697 – 709, 1986.

[42] Tsunhin John Wong, Edward T Cokely, and Lael J Schooler. An online database of act-r parameters:
Towards a transparent community-based approach to model development. In Proceedings of the Tenth
International Conference on Cognitive Modeling, Philadelphia, PA, USA, pages 282–286. Citeseer, 2010.

[43] Bernard P. Zeigler and Phillip E. Hammonds. Modeling & Simulation-Based Data Engineering: Introducing
Pragmatics into Ontologies for Net-Centric Information Exchange. Academic Press, 2007.

103

	Introduction
	The Complexity of a Program
	The Psychology of Programming
	Why Model a Programmer?

	Background
	The eyeCode Experiment
	The Cognitive Complexity Metric
	Chunking and Tracing
	Chunk Complexity (C)
	Immediate Chunk Complexity (R)
	Tracing Difficulty (T)

	The ACT-R Cognitive Architecture
	Buffers, Chunks, and Productions
	The Subsymbolic Layer
	Successful ACT-R Models

	Cognitive Domain Ontologies
	Entities, Relations, and Constraints
	Ball Example
	Higher-Order Constraints
	Computer Configuration Example
	Utility and Objective Functions
	Constraint Knowledge and Cognition

	Mr. Bits
	Architecture
	Variables and Context
	Sub-symbolic Chunking and Tracing
	Sums, Comparisons, and Boolean Expressions
	Results and Discussion
	Human-Model Comparison
	Human Trial Times
	Trial Time as a Complexity Metric
	Limitations and Threats to Validity

	Nibbles
	Choice Point Uses
	CSP and Text Interpretation
	The Nibbles CDO
	Programming Knowledge as Constraints
	Results
	counting - twospaces
	overload - plusmixed
	scope - diffname

	Discussion
	Model Capabilities
	Limitations and Threats to Validity

	Conclusion
	Future Work
	Improving Mr. Bits
	Nibbles 2.0
	Combining Mr. Bits and Nibbles

	Acknowledgements
	Appendix - Mr. Bits Code
	Appendix - Computer Example
	References

