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Abstract

Psychologists and computer scientists have studied the cognitive aspects of programming for nearly
thirty years. Eye-tracking has gained popularity recently as a tool for gaining insight into programmer’s
cognitive processes while they comprehend programs. Both low-level eye movement metrics, such as
fixation duration, and high-level metrics like line to line transition probabilities, provide rich alternatives to
standard think-aloud experiment protocols. We present an experiment in which programmers predict the
output of ten short Python programs, each with alternative versions. We use eye movements to discover
important code elements/lines, characterize evaluation strategies, and investigate the source of participant
errors. In addition, an open source data analysis library is introduced that provides specialized metrics,
plots, and statistics for eye-tracking program comprehension experiments.
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1 Introduction

The cognitive aspects of programming have been studied by psychologists and computer scientists for nearly
thirty years [15], culminating in the development of several cognitive models of program comprehension
(e.g., [37, 31, 9, 16]). Though useful as tools to describe and reason about program comprehension, these
(mostly qualitative) models cannot quantitatively predict human behavior when comprehending a specific
program. The development of a quantitative cognitive model would represent a milestone in the under-
standing of program comprehension, and facilitate the semi-automated analysis of design alternatives for
programming languages and integrated development environments (IDEs).

Recently, the use of eye-tracking has become prevalent in the study of program comprehension [38,
1, 8]. Eye movements are a rich data source, and have been strongly linked with visual attention and
cognitive processes [29]. By collecting and analyzing eye movement data from developers during a specific
programming task, researchers hope to gain insight into the cognitive processes programmers use to read
and understand programs. When combined with other sources of data, such as responses to questionnaires,
task timing, response accuracy, and participant experience, the space of possible cognitive models can be
strongly constrained. Our programming task, predicting a program’s printed output, is a starting point for
the development of a cognitive model. This model will predict human behavior when interpreting simple
Python programs.

1.1 The Experiment and Research Questions

We present an experiment in which 29 participants with a range of Python and overall programming
experience predicted the output of ten small Python programs. Most of the program texts were less than
twenty lines long and performed simple calculations (e.g., computed the area of a rectangle). We used ten
different program bases, each of which had two or three versions with subtle differences. Participants were
randomly assigned a version of each program, and performed the experiment in front of a Tobii TX300
free-standing eye-tracker (recording at 300Hz). We computed a variety of eye movement metrics, and
produced high-level static and dynamic summary statistics of our data. These metrics and statistics, such as
time spent looking at particular code elements and transition probabilities between code lines, helped us
answer several research questions.

First, how does the eye movement data from our experiment compare to other eye-tracking program
comprehension experiments? Our task, output prediction, is relatively unique compared to other studies.
Locating bugs and answering comprehension questions are the most common tasks (see [8] for an brief
survey). Like many other eye-tracking studies, we make use of common fixation metrics and relationships
between areas of interest (AOIs) to summarize our data. In addition, we incorporate specific program
comprehension measures – e.g., proportion of lines reviewed in the first 30% of a trial [38] – and compute
fixation metrics over rolling time windows.

Second, can aggregate eye movement metrics and summary statistics be predicted from textual/syn-
tactic features of code? Readability studies of code have found that both textual features (whitespace,
word/line length), and syntactic features of code (identifier/keyword count) can influence assessments
of the perceived complexity of the code and reading behavior [6, 13]. By linking code features with eye
movements, it may be possible to predict how difficult a specific program is to read and comprehend.
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Another benefit of these studies is the contribution of valuable empirical data towards the investigation
of programming language usability [35]. Language usability studies are rare, and the addition of new
language features seldom involves controlled human experiments. A quantitative understanding of program
comprehension would be a boon to researchers and members of industry who are examining language
design alternatives.

Finally, do differences between versions of the same program, or demographics/performance of the
participant, influence eye movements? Eye movement differences have been previously observed between
expert and novice programmers during comprehension and debugging tasks [2, 4]. While more experienced
programmers tend to perform better, researchers have noted differences in strategies between more and
less experienced developers. In our experiment, we consider both a participant’s Python and overall
programming expertise, as well as which version of a program they were asked to interpret. Some program
versions were designed to reward syntactic and semantic knowledge of Python (e.g., counting, scope), while
others were intended to expose performance differences (e.g., rectangle, whitespace). When analyzing
our results, we separated trials for some programs by response correctness, and compared eye movement
metrics between the two groups.

1.2 Outline

This chapter is organized as follows. Section 2 provides background on eye-tracking in general and as it
has been applied specifically to program comprehension. Our experimental methodology is introduced in
section 3 along with the metrics and data transformations used in our analysis. Section 5 presents a detailed
analysis of our data, with section 5.2 breaking down results by program base. The discussion in section 6
connects the details of our results with the three research questions in this section. Lastly, section 7 concludes
and considers future work.

2 Background

Although it has only recently been applied to program comprehension, eye-tracking has existing in one form
or another for over a century. In this section, we start by reviewing the mechanisms of modern eye-trackers
and the assumptions made when analyzing eye movement data. Next, we describe how eye-tracking has
been incorporated into studies of program comprehension. Based on these studies, we outline expectations
for the results of our experiment

2.1 Eye-tracking Methodology

Researchers have collected eye movement data for over one hundred years, usually to study natural language
reading behavior [28]. Modern eye-trackers tend to use an infrared camera and LED to detect the pupil center
and corneal reflection. With some calibration and a bit of trigonometry, an individual’s “point of regard”
can be determined fairly accurately [27]. Eye-tracking hardware can be broadly classified as free-standing
or head-mounted. Free-standing eye-trackers function much like a webcam attached to a monitor. The
participant is free to move about, though data accuracy is lost if their head moves too far outside of an
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expected range 1. Head-mounted eye-trackers solve this problem by attaching the camera to the participant’s
head, allowing more range of motion. This increases data accuracy, but may be distracting or otherwise
interfere with the experiment.

Raw eye movement data, called gaze points, are processed into fixations and saccades by software
outside the eye-tracker – typically provided by the hardware vendor. A fixation occurs when the eye
maintains its gaze on a particular location for an extended period of time. Fixations last around a few
hundred milliseconds, and are broken up by saccades: rapid jumps from one fixation location to another 2.
For a given task, fixations are mapped to specific areas of interest (AOIs): relevant regions of the task
environment. AOIs are often individual words for reading tasks, or specific objects in a scene for image-
based tasks. A series of fixations from one AOI to another is called a scanpath, and can be used to compare
participants’ task strategies [29].

A variety of eye-tracking metrics exist to quantify eye movement behavior. Fixation counts and duration
for each AOI are common metrics for determining which words or objects participants considered most
important. There is a crucial assumption being made here, called the eye-mind hypothesis – that point of
regard and visual attention are strongly correlated. This hypothesis lies at the heart of most eye-tracking
research, and is widely accepted by the eye-tracking community. It should still be kept in mind when
interpreting results, however. Other eye movement metrics, such as the density of fixations in a given area or
the amplitude of saccades, can be used to infer the quality of information cues in the task environment. All
of these metrics, of course, depend on the details of the software used to transform gaze points into fixations
and saccades. Like the eye-mind hypothesis, these details are potential threats to the validity of experimental
results.

2.1.1 Benefits and Potential Problems

Eye movement data provides rich, fine-grained physiological data for visually-intensive tasks. With the
eye-mind hypothesis, this allows researchers to gain a unique insight into a participant’s cognitive processes
with high temporal resolution. Other experimental protocols may provide similar insights, such as “think
aloud” in which a participant narrates their activity during the task. The data from such protocols are
necessarily mediated by consciousness, however, and therefore may not reflect the details of cognitive
processes outside of conscious awareness [24]. To the extent that the task at hand depends on these types of
processes, eye movements have an advantage. Additionally, the density of fixation and saccade data make it
ideal for statistical methods, both within and between participants.

There are potential problems in the collection and interpretation of eye movement data. The accuracy
and precision of fixations and saccades strongly depends on the eye-tracking hardware and experience of
the data collector [25]. In some cases, a participant’s eye color, contacts, and eye make-up have been found
to decrease data accuracy. Even under ideal collection conditions, there is also some guesswork involved
in the transformation of raw gaze data into fixations/saccades, and again in the mapping of fixations
to areas of interest (AOIs). Using different methods for each data transformation step may lead to very
different conclusions, especially when using a between-subjects experimental design with few participants

1A chin rest can help keep the participant’s head still, but forces them to perform the experiment with a potentially unnatural
posture.

2Besides alternating between fixations and saccades, humans and other animals have a “smooth pursuit” visual mode in which the
eyes smoothly following a moving target [10].
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(common in many eye-tracking studies). Finally, comparing eye movements between participants may
require additional data massaging or quantization when looking behaviors are highly individualized. For
example, the precise fixation order of code lines in our task varied considerably between participants, leading
us to favor the comparison of high-level metric between groups of participants instead (see Section 5.1.3 for
details).

2.2 Reading and Program Comprehension

Within the last decade, eye-tracking has become more prevalent in studies of program comprehension. In
these studies, programmers perform a variety of tasks on source code, such as locating bugs [38], predicting
output [18], and answering comprehension questions [8]. Participants’ eye movements during program
comprehension are used to infer the effects of visualizations [1], expertise [13], pair programming [33], and
other environmental factors.

Bednarik et. al performed extensive eye-tracking experiments with expert and novice programmers,
focusing on the utility of program visualizations alongside source code [1]. Besides task performance, they
found differences between novices and experts in both low-level eye movement metrics (mean fixation
duration), and high-level looking behaviors (attention switches between code and visualization). Experts,
for example, attended to the source code more than novices, and appeared to integrate more information
between the different representations of a program. An earlier paper by Bednarik also found that experts
were more affected by being force to use a restricted focus viewer (RFV) when viewing a program’s source
code and alternative graphical representation [3]. The RFV blurred the contents of the screen except for a
small region controlled by the participant. In this paper, Bednarik et. al found that, while task performance
did not decrease, more experienced programmers switched visual attention between representations less
often when the RFV was active. Novices did not modify their behavior, however, suggesting that experts
were making heavier use of peripheral vision when RFV was not active.

Uwano et. al had participants review C source code to locate defects, and analyzed the resulting patterns
in their eye movements [38]. They observed a particular pattern, called scan, which represents a preliminary
reading of the entire program (12-23 lines long) from top to bottom. In their experiment, approximately 73%
of code lines tended to be fixated within the first 30% of a trial. Participants who spent more time in this
scan pattern were also more likely to detect the defects in the program. We observed a similar scan pattern
during some trials, but did not find a correlation with task performance.

Busjahn et. al compared the behavior of programmers reading both Java source code and natural language
texts [8]. Significant differences were found in low-level eye movement metrics between text types, such as
mean fixation duration and regression rates 3. Substantial variation was also found between participants
and between texts of the same type (source code or natural language). Additionally, the proportional fixation
times for different categories of “words” in source code was analyzed, normalized by number of characters 4.
Out of keywords, identifiers, numbers, and operators, Busjahn et. al found that keywords received the least
amount of fixation time per character. An earlier study by Crosby found similar results for keywords, though
their other source code categories differed [13]. We observed the same pattern for keywords, and found that

3A regression occurs when a previously fixated word is fixated again.
4As noted by Busjahn et. al, normalizing by syllables or some other unit that can be processed within a single fixation may be more

appropriate.
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lines with mathematical operators or comparisons received the most fixation time (Section 5.1.2).

2.2.1 Expectations for Our Data

Based on the body of eye-tracking program comprehension study literature, we can form expectations for
our own experiment. These expectations may be violated, however, given the uniqueness of our task. As
mentioned previously, many eye-tracking experiments in this area ask participants to debug or answer
comprehension questions about programs. In contrast, our participants were tasked with predicting the
precise printed output of a program. Within the cognitive modeling subsection of program comprehension,
programmers have demonstrated significant differences in their recalled representations of programs based
on the task at hand [14]. Specifically, a programmer’s “mental model” will differ if they’re asked to
recall relevant portions of a program for the purposes of documenting or summarizing versus modifying or
reusing it. An analogous difference may be expected when programmers are asked to answer comprehension
questions about, or literally evaluate, a program’s source code.

Assuming some similarity between our task and others, however, we should expect mean fixation time to
be related to experience [1], and to fall within the 300-400 ms range [8]. Regression rates are also predicted to
be in the 30% to 40% range, well above the typical 10% to 15% range for natural language text [28]. When
analyzing reading behavior, we should also expect the majority of lines to be fixated in line order within the
first 30% of the trial [38]. Finally, participants are expected to fixate on more “complex” statements about
twice as much as “simple” statements, and to spend the least amount of time on keywords [13].

Next, section 3 introduces our experimental methodology. Section 5 then delves into the details of our
results. We analyze participants’ eye movements in terms of reading behavior, by program base/version,
and by participant demographics. Our data conformed to some of the expectations in this section (e.g.,
keyword fixation time), but violated others (e.g., fixation duration and experience). The discussion in
section 6 considers reasons for these violations, and relates the detailed results to our research questions.
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3 Methodology

We now introduce our experiment design and eye-tracking hardware. Section 3.3 describes the process of
transforming raw eye movement data into fixations, and mapping those fixations to areas of interest. Lastly,
section 3.4 provides definitions for each of the eye movement metrics used in the analysis.

3.1 Experiment and Participant Demographics

We recruited 29 via e-mail and from an introductory programming class at Indiana University. Participants
were paid $10 each, and performed the experiment in front of an eye-tracker. All participants were screened
for a minimum competency in Python by passing a basic language test. The mean participant age was
27.3 years, with an average of 2.9 years of self-reported Python experience and 9.4 years of programming
experience overall. Most of the participants had a college degree (86.2%), and were current or former
Computer Science majors (65.5%). Figure 1 has a more detailed breakdown of the participant demographics.

Figure 1: Demographics of all 29 participants.

The experiment consisted of a pre-test survey with questions about demographics and experience, ten
trials (one program each), and a post-test survey assessing confidence and requesting feedback. The pre-test
survey gathered information about the participant’s age, gender, education, Python experience, and overall
programming experience. Participants were then asked to predict the printed output of ten short Python
programs, one version randomly chosen from each of ten program bases (Figure 2). The presentation order
and names of the programs were randomized, and all answers were final. No feedback about correctness
was provided and, although every program produced error-free output, participants were not informed
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of this fact beforehand. The post-test survey gauged a participant’s confidence in their answers and the
perceived difficulty of the task overall.

Figure 2: Sample trial from the experiment (between inline). Participants were asked to predict the exact output of ten Python
programs.

We collected a total of 288 trials from 29 participants starting November 20, 2012 and ending January 19,
2013. Trial responses were manually screened, and a total of 2 trials were excluded based on the response
text. Participants were not constrained to complete individual trials or the experiment in any specific amount
of time. There were a total of twenty-five Python programs in our experiment belonging to ten different
program bases. The programs ranged in size from 3 to 24 lines of code, and did not make use of any standard
or third-party libraries.

3.2 Eye-Tracking Hardware

The Tobii TX300 is a free-standing eye-tracker that collects gaze data at 300Hz, and averages an error of
around 0.04 degrees of visual angle for both eyes 5. The screen is 23 inches in size and measures 557 mm
across with a 1920x1080 maximum resolution. Before starting the experiment, participants went through
a brief calibration using the vendor-provided Tobii Studio software package. Aside from being asked to
sit about 65 cm away from the eye-tracker and not to move their heads as much as possible, participants
interacted with the TX300 as if it were a normal computer.

We used Tobii Studio 2.2, a software package provided by Tobii with the eye-tracker, to do calibration and
to record/process raw gaze data into fixations and saccades. The TX300 records raw moment-to-moment
gaze points, which Tobii Studio collects and processes using a fixation filter. There is no precise means of
translating gaze points into fixations, so we relied on Tobii Studio’s default I-VT fixation filter to perform
this task for us. The Tobii Studio user manual [36] describes this filter as follows:

The general idea behind an I-VT filter is to classify eye movements based on the velocity of the directional
shifts of the eye. The velocity is most commonly given in visual degrees per second (◦/s). If the velocity of

5Note, however, that anything within 1 degree may be fixated by the fovea without moving the eyes.
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Figure 3: Tobii TX300 Eye-tracker. Screen size is 23 inches (557 mm wide) with 1920x1080 resolution. When a participant is
seated 65 cm away from the screen, it will subtend about a 31 degree visual angle.

the eye movement is below a certain threshold the samples are classified as part of a fixation.

More technical information about the I-VT fixation filter can be found in a Tobii whitepaper [26]. Per the
Tobii Studio user manual, we also filtered out fixations which the eye-tracker marked as potentially invalid
(i.e., with a left or right eye validity code higher than 1).

Over the course of 290 trials (10 trials per participant), we collected around 50,000 fixations (average of
172 per trial). Each fixation consists of a two-dimensional screen coordinate, a start time, and a duration in
milliseconds. A quick plot of one trial’s fixations on a static image of the participant’s screen immediately
reveals one of the many challenges involved in analyzing gaze data (see Figure 4). Like the gaze point
to fixation translation step that Tobii Studio’s fixation filter performs, there is some guesswork involved
in mapping fixations to areas of interest (AOIs). In the next section, we describe our method for assigning
fixations to words, lines, and interface regions on the screen.

3.3 Areas of Interest

An area of interest (AOI) is a region of the screen where we would like to know when the participant is
fixating. We define three kinds of code AOIs (block, line, syntax) and two kinds of interface AOIs (output
box, continue button). A block AOI is one or more lines of code separated from other blocks by at least
one blank line. Figure 5 shows the block AOIs for the between functions program (highlighted on the left
side of the screen) as well as the output box and continue button AOIs (highlighted on the right side of the
screen). Figure 6 shows the line and syntax AOIs for the same program. Line AOIs include indentation
because it is semantically relevant to Python. Syntax AOIs are automatically computed with the popular
Pygments library [5] and assigned one of the following categories: keyword, identifier, operator (+, -), literal,
or comparison (<, >).

Because fixations are essentially timestamped screen coordinates, the easiest way to map a fixation to an
AOI is to simply check if the fixation point lies within one of the AOI rectangles (Figure 7). This method,
which we will refer to as point mapping, is fast and easy to compute. When AOIs are large (relative to the

10



Figure 4: Fixation circle plot for a single trial (between functions program). Circle radii are proportional to fixation duration.

Figure 5: Block areas of interest for the (between functions program). The output box and continue button are also areas of
interest.
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Figure 6: Left: line areas of interest in the between functions program. Right: syntax areas of interest in the
between functions program.
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expected error of the eye-tracker) and separated by a sufficient amount of empty space, point mapping can
be used to accurately map fixations to the correct AOIs. If AOIs are small and close together, however, point
mapping may fail to correctly map fixations due to hardware error or participant movement. Extending
the boundaries of an AOI can help, but only if one AOI rectangle does not overlap another. Because our
code AOIs are relatively small and close together, we consider a second mapping method that we call circle
mapping.

Figure 7: Point-based AOI mapping. Fixations are mapped to an AOI if the fixation point lies within the AOI rectangle.

When circle mapping fixations to AOIs, a circle is centered around the fixation point. For our analysis,
the radius of the fixation circle (20 pixels) was chosen based on the size of our text and expected error of the
eye-tracker. The area of the circle’s intersection with every AOI is computed (Figure 8), and the AOI with the
largest area of overlap is mapped to the fixation. This mapping method is more computationally intensive,
but has an advantage over point mapping when AOIs are close and their boundaries cannot be extended
without overlap. When a fixation occurs near two AOIs, the closest one will be mapped to the fixation.
Circle mapping could also be used to assign probabilities to multiple AOIs (based on area of overlap), and
combined with a Markov model to find the most likely series of fixations over time (see Future Work).

Figure 8: Circle-based AOI mapping. Fixations are surrounded by circles and mapped to the AOI with the biggest area of overlap
(AOI 1 in this case).
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3.3.1 Offset Correction

During the data cleaning step of our analysis, fixation coordinates were manually adjusted in the vertical
direction for each participant. A single vertical offset was used to correct fixations for each participant’s
trials, and was chosen to increase the overlap of fixations with non-empty portions of the screen. Figure 9
demonstrates the process: an uncorrected fixation plot is shown on the left. The fixations near the continue
button (highlighted in green) suggest that the eye-tracker may be reporting gaze points slightly low for this
participant. On the right, the corrected fixation plot lines up better visually with the non-empty portions of
the screen. All offsets are documented, and the original raw data has been preserved.

Figure 9: Example of offset correction. Raw fixations (left) were shifted up to better align with known areas of interest (right).

While an automated offset correction process would have been preferred, conventional methods require
knowing where a participant must be looking at some point in time. We did not require that participants
fixate in a specific spot at the start or end of a trial, so this information was not available. Although it would
be reasonable to expect participants to fixate on the continue button before ending a trial, we found several
instances where this was clearly not the case. Indeed, some participants hovered their mouse cursor over
the continue button, shifted visual attention to the code (perhaps for a final check), and clicked the button
without re-fixating it first!

3.3.2 Scanpath Comparisons

With fixations mapped to areas of interest, we can now codify a participant’s behavior over time. A scanpath
is a string representing the order in which AOIs were fixated during a trial. This string does not typically
contain any duration information, and adjacent fixations on the same AOIs are usually collapsed into a
single symbol. For example, the sequence of fixated AOIs in Figure 10 is AABCBCCA. Removing duplicate
adjacent fixations, we are left with the scanpath ABCBCA.

Scanpaths can be used to generate transition matrices, which quantify how often one AOI is fixated after
another. Using the scanpath from our example above (ABCBCA), the transition matrix in Figure 11 shows that
B always follows A, that C always follows B, and that both A and B follow C half the time. More sophisticated
methods, such as the scanpath successor representation [19] incorporate discounted temporal information
(e.g., C eventually follows A). For our analysis, however, we only make use of simple transition matrices.

Metrics like the Levenshtein Distance (commonly know as string edit distance) can be used to compare
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Figure 10: Creation of an AOI scanpath. Fixations are mapped to an AOI sequence string, often with repeated items removed.

Figure 11: Transition matrix for the scanpath ABCBCA. B always follows A, A follows C half the time, etc.
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scanpaths. This distance metric between two strings increases by one for each insertion, deletion, or character
change necessary to transform one string into another [30]. The distance between similar strings, such as 123
and 1234 will be small (in this case, just 1). The maximum edit distance between two strings is the length
of the largest string, and thus we can use this value as a normalization factor (distance / length of largest
string). The normalized edit distance between scanpaths can be used to cluster trials by strategy – common
orderings of AOI fixations. This makes sense when there are strong expectations about AOI fixation order,
and when scanpaths are close in length. More general algorithms, such as ScanMatch [12], make use of
techniques developed for DNA sequence matching. These algorithms allow for more fine-grained control of
sequence substitutions (e.g., by penalizing specific character replacements). They are also much better at
dealing with scanpaths that have missing segments.

3.4 Eye-Tracking Metrics

Once gaze data has been processed into fixations and saccades, there are a plethora of metrics available to
summarize the data [27]. Table 1 lists the handful of metrics we used to summarize participant fixations
within and between trials. The fixation count is simply the number of fixations, while mean fixation
duration is the average amount of time a participant spent fixation some area of interest (AOI). Fixation rate
is the number of fixations per second over the course of a trial. Spatial density divides an AOI into a grid,
and is higher when more cells in the grid receive at least one fixation. The normalized saccade length and
average saccade length measure the total and average Euclidean distances between fixations. Finally, the
Uwano review percent is the percentage of lines fixated in the first 30% of a trial.

3.4.1 Line Metrics

What properties of a line of code influence a participant’s reading behavior? We might expect the position
and length of a line to influence when a participant fixates the line and for how long. We define several
textual and content-based metrics to quantify the properties of each line of code. Table 2 describes textual
metrics, which could be applied to any text – source code or natural language. These metrics quantify the
size and position of a line, as well as the distribution of whitespace within it. Table 3 lists metrics specific to
source code, such as the number of keywords and operators.

Name Description
Fixation Count Number of fixations in a given time period.
Mean Fixation Duration Total fixation duration in a given time period divided by the fixation count.
Fixation Rate Number of fixations divided by the number of seconds in a given time

period.
Spatial Density Number of grid cells containing at least one fixation in a regular N× N grid

covering a given AOI [11].
Normalized Scanpath Length Total Euclidean distance between fixations in a scanpath divided by time

between first and last fixation.
Average Saccade Length Average euclidean distance between start and end points of each saccade.
Uwano Review Percent Percentage of code lines reviewed within the first 30% of a trial [38]

Table 1: Eye-tracking metrics used in our analysis.

16



Textual Metric Definition

Line length Number of characters (excluding indentation)
Line number proportion Line number divided by total number of lines
Whitespace proportion Number of spaces (excluding indentation)
Indentation level Number of 4-space blocks on the left

Table 2: Textual line metrics

Content Metric Definition

Keyword count Number of class, def, for, if, print, return
Operator count Number of *, +, -, ., <, =, >, and, in
Identifier count Number of class/function/variable names
Line category Content of line, one of:

• List creation (literal [1, 2, 3])
• Comparison (x < y)
• Math operation (+, ∗, −)
• For loop (for x in y)
• Function call (f(x))
• Function definition (def f(x))
• If statement (if x)
• Print statement (print x)
• Return statement (return x)
• Class definition (class Foo)
• Assignment (x = y)

Table 3: Content-based line metrics

The line length is simply the number of characters in a line, excluding the whitespace at the start of
a line. Rather than use line number, we calculate line number proportion. This metric tends to correlate
better with the time of first fixation (Section 5.1), suggesting that participants perform an initial scan of a
program faster for larger programs. The whitespace proportion of a line is simply the proportion of spaces
to characters, excluding initial indentation. Lastly, the indentation level measures the amount of whitespace
before a line begins, divided into 4 space blocks (a standard in Python).

For content-based metrics, we define the keyword count, identifier count, and operator count. These
are simply the number of keywords, variable/function names, and mathematical/boolean operators in a
given line. The category of a line was based on a number of factors. For example, lines containing a for or
return keyword were classified as “For Loop” and “Return Statement.” Some lines, such as x = [1, 2, 3],
could have multiple categories (assignment, list creation). We picked the category for each line that was
highest in the list given in the final cell of Table 3, so the example line would be classified as a list creation
rather than an assignment.
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4 The eyeCode Library

To facilitate the analysis of eye movement data in the context of program comprehension, we created a
Python library called eyeCode. Tobii Studio provides basic plots and statistics, but customization is limited
to a few menu options. A more sophisticated tool, OGAMA (Open Gaze and Mouse Analyzer), is a freeware
package with many more bells and whistles [39]. In addition to standard eye movement plots, OGAMA
can be used to create areas of interest and compute the Levenshtein distance between scanpaths. Like Tobii
Studio, however, OGAMA is intended to be fairly task neutral, and therefore did not have specific tools for
program comprehension experiments.

The eyeCode library is built on top of the pandas statistical computing library [23], and contains spe-
cialized functions for processing, plotting, and computing metrics over fixations and saccades on a static
code display. The source code is freely available at http://github.com/synesthesiam/eyecode under a
liberal open source license. Example analyses and data from multiple experiments (including this one) are
embedded into the library along with participant info and a web-based fixation viewer.

4.1 Areas of Interest

Identifying areas of interest (AOIs) can be done automatically for programming languages that are supported
by the popular Pygments library [5]. This relieves the researcher of the need to manually create AOIs for
each code “word”, line, and block. Pygments contains lexers for a variety of languages and, when combined
with a monospace font size and line spacing, can be used to generate rectangles for every token in a program.
Figure 12 shows the token AOIs identified from a short Java program. Tokens are then merged into lines,
and lines are merged into whitespace-separated blocks.(Figure 13). For experiments using variable-width
fonts, eyeCode has methods for scanning raw images to locate words and lines.

Figure 12: Areas of interest for a Java program automatically identified using the Pygments Python library.

After identifying areas of interest, eyeCode can map fixations to AOIs via a process called hit testing.
Two methods are currently supported: point mapping and circle mapping (see Section 3 for details). AOIs in
eyeCode can also be grouped into layers, allowing overlapping AOIs to be hit-tested simultaneously (only
AOIs within a layer must be disjoint). Hit-tested fixations can be easily converted to scanpaths, summarized
with metrics, or visualized with one of many plots.
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Figure 13: Left: Line-based AOIs for the initvar - onebad program. Right: Block-based AOIs for the same program.

4.2 Metrics and Plots

Common eye movement metrics, such as fixation duration, can be computed per area of interest and across
trials (Figure 14). Higher-level metrics, like transition matrices and spatial density [11], are available along
with many custom visualizations. Because lines are especially relevant for code, eyeCode contains specialized
plotting functions for both static and dynamic views of line fixations across and within trials. Figure 15
shows an aggregate view of fixation duration by line for all participants in a single program (top), and a
timeline of fixations on each line for a single trial (bottom). Fixations in the timeline above the dotted line
occurred in the output box – the text area where participants enter their predictions of program output.

Figure 14: Total fixation duration by AOI kind and name for initvar - onebad (all participants).

The “Super Code” plot combines fixation duration information about code elements, lines, and blocks
into a single plot (Figure 16). The color of each code element represents the relative amount of time spent on
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Figure 15: Top: Total fixation duration for each line (all participants). Bottom: Fixation timeline for experiment 1 trial 1.

that element. Each line has a bar next to it, with the length proportional to the total fixation duration on
that line. These bars are also colored, and each block of code shares the same color. This shows the relative
amount of time spent on each block as a whole – the darkest red set of bars had the most fixation duration.

4.3 Rolling Metrics

The eyeCode library supports computing some low and high-level metrics over a rolling time window in
a trial. Comparing the visualization of these rolling metrics with the line fixation timeline allows for the
gathering of additional evidence to support hypothesis about participants’ real-time cognitive processes. In
Figure 17, for example, both the average length of a saccade and average duration of a fixation are computed
every half second across a one second window. Large changes in either metric can be mapped back to the
line fixation timeline in Figure 15, and potential causes can be enumerated based on where and when the
participant is looking. Some metric spikes, such as the increase just after 25 seconds, may be expected –
here, the participant is clearly transitioning back and forth between the output box and the source code.
Others, such as the increase in average fixation duration just after 15 seconds, suggest increased focus. Given
the subsequent transition to the output box (and that the first response characters are typed afterwards),
it’s reasonable to guess that the participant is mentally calculating the product 1 ∗ 2 ∗ 3 ∗ 4 = 24. Indeed,
inspecting the participant’s response reveals an “a = 24” following by a correction to just “24”.
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Figure 16: Relative fixation duration plot for all overload plusmixed trials. Text color indicates fixation duration relative to
other code elements. Bar color indicates relative fixation duration per whitespace-separated block. Bar length is proportional to
within-block fixation duration.

Figure 17: Rolling metrics for experiment 1 trial 1 (initvar - onebad). Average saccade length (red, left) and average fixation
duration (green, right) computed over a one second window every half second.
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5 Results

We collected approximately 50,000 fixations from 288 trials across 29 participants. Below, we analyze and
summarize our data first across all trials (Section 5.1), and then by individual program kind (Section 5.2).
Plots and analyses were done using the eyeCode library. Statistics were computed with scipy [21], and
linear models were fit using the statsmodels package [32].

Non-parametric statistics were used to compare groups (Mann-Whitney U test) and determine correla-
tions (Spearman’s r) [34]. We calculate effect sizes for U tests using the rank-biserial correlation r, a metric
whose range is [−1, 1] with 0 meaning no correlation [40]. As a rule of thumb, we take absolute values of r
greater than or equal to 0.2 to indicate a meaningful relationship (and |r| > 0.4 as a strong relationship). For
correlations, we infer weak, moderate, strong, and very strong relationships when |r| is greater than or equal
to 0.2, 0.3, 0.4, and 0.7 respectively.

5.1 Reading Behavior

Across all participants and trials, we observed a mean fixation duration of 273 ms. Fixations typically
last 200-300 ms [28], but higher values have been observed in several program comprehension studies. A
fixation duration range of 309-408 ms was found in a program comprehension study by Busjahn et. al [8].
Participants in the same study read natural language texts, and a typical fixation duration range of 232-285
ms was recorded. In another study by Bednarik et. al, participants under most conditions had mean fixation
durations in the 300-400 ms range when viewing code [1].

When fixating the output box – the text box into which participants typed their responses – fixations were
significantly longer, with an average of 331 ms versus 267 ms when fixating source code (U = 89197473.5, p <

.001, r = 0.03). This suggests that participants were attending to their own predicted output slightly more,
but the effect size is too small to be sure. Per trial, we observed an average of 172 fixations and approximately
2.73 fixations per second (Figure 18). At the trial level, and for each line of code, total fixation count and
duration were almost perfectly correlated (r = 0.97, p < .001). At the interface level, participants produced
an average of six transitions between the source code and output box, indicating an on-demand construction
of responses. Our analyses of individual programs’ code line and output box transition matrices support
this hypothesis by correlating output transitions and responses.

Figure 18: Fixation metric distributions for all trials.

Participants tended to read programs in line order (see Figure 19 for an example). The time of their
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first fixation (proportional to the trial duration) on each line was strongly correlated with the line number
(proportional to the total number of lines in the program). In fact, line number proportion alone accounts for
approximately half of the variance in a simple linear model predicting first fixation proportion (r2 = 0.57).
Textual line metrics, such as line length, indentation, and whitespace proportion did not significantly improve
predictions. Additionally, content-based line metrics (e.g., number of identifiers, operators) did not improve
the linear model’s performance.

Figure 19: Timeline for trial 268 (overload plusmixed). Participants read programs (mostly) in line order before responding.

Longer lines tended to receive more time: total fixation duration per line and line length were strongly
correlated (r = 0.41). Adding the whitespace proportion and length of the line to a simple linear model
predicting fixation duration produces an r2 of 0.54. Surprisingly, additional textual and content-based line
metrics to not improve model performance significantly. This may be due to “important” program lines
simply being longer, such as lists containing values necessary for calculations. The relationship between
category and fixation duration may also be non-linear, resulting in a plateau in linear model performance.

While the category of a line was not a significant predictor of first fixation or total fixation duration,
there are potential confounds due to patterns in the our source code. Across all 25 programs, whitespace
proportion decreased with line number (i.e., textual density increased). Additionally, operator counts were
positively correlated with whitespace proportion and identifiers, but negatively correlated with keyword
counts. These patterns may have induced co-variances between textual and content-based metrics, which
resulted in a lack of model performance improvement. A meta-study of multiple code repositories would be
required to determine whether these patterns hold in general across Python code, or if they are simply an
artifact of the programs in our experiment.

Based on other eye-tracking studies, we expected to find a correlation between programmers’ experience
level and eye movement metrics, especially mean fixation duration. Each participant’s distribution of mean
fixation durations per trial is shown in Figure 20. While participants are somewhat distinguishable by these
distributions, they are heavily skewed. In addition, sorting by years of programming experience on the
x-axis does not show evidence of a strong trend. A linear model predicting mean fixation duration from
programming experience does produce a significant p-value (< 0.05) and a negative coefficient, but the effect
size is extremely small (r2 = 0.021).

A similar pattern is seen when looking at the number of fixations per second (fixation rate). Figure 21
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Figure 20: Mean fixation duration for each trial, grouped by participant. Participants are ordered from least to most programming
experience.

shows the distributions of mean fixation rates by trial for all participants. The x-axis is again sorted by years
of programming experience, but this time there is not even a statistically-relevant trend. The discussion in
section 6 provides potential reasons for the mismatch between experience and fixation duration/rate – our
unique task and fairly simple programs.

Uwano Review Percent and Spatial Density. Uwano et. al found that programmers tended to fixate
72.8% of code lines during the first 30% of a trial [38]. We refer to this value as the Uwano Review Percent.
Interestingly, we had a very similar observation: across all trials, an average of 72.5% of code lines were
fixated in the first 30% of a trial. However, this number appears to be largely driven by the number of
lines in the trial’s program. Percentages ranged from 44.4% to 91.1% depending on the program base and
version. Additionally, a strong correlation was found between the Uwano Review Percent and the number
of lines of code for individual trials (r = −0.40, p < 0.05). Thus, we cannot infer something general about a
programmer’s behavior, independent of the program, from the Uwano Review Percent.

We computed the spatial density of fixations over an envelope surrounding all lines of code for each
trial. This envelope was divided into a grid whose cells were 30 pixels by 30 pixels, and the density was
simply the percentage of these cells that had at least one fixation [11]. Across all programs, the mean spatial
density was surprisingly consistent with a mean of 0.40 and a standard deviation of 0.07. This value is
strongly correlated with the percentage of the code area that has text in it, however, suggesting the obvious –
participants are not fixating empty space (r = 0.57, p < 0.01). Different grid sizes may provide more useful
information, but we will leave this exercise for future work.

5.1.1 Saccade Angles

Saccades are the quick jumps between fixations, and can reveal interesting details about a task. The angle
and distance between the source and destination fixation of each saccade can be plotted and compared
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Figure 21: Mean fixation rate for each trial, grouped by participant. Participants are ordered from least to most programming
experience.

between different tasks. When reading natural language text – e.g., a paragraph of English – we might
expect most saccades to be short and to the right, with a handful of long saccades to the left (when jumping
to the next line). The right-most polar plot of Figure 22 shows precisely this: saccade angles and distances
collected from a reading task in which 12 participants read and answered questions about a paragraph of
English text [7]. Each dot represents a single saccade’s angle (0◦to the right) and length (distance from center,
proportional to Euclidean distance of longest saccade).

If we examine the saccade angles between fixations over code, we find large differences with the natural
language task. The left-most plot in Figure 22 contains saccades from all participants and trials in our
experiment that occurred over the program text (i.e., excluding the output box). Angles are significantly more
spread out in the vertical direction (90◦and 270◦), and there appear to be equal numbers of long right and
left saccades. While code is often considered text when modeling program comprehension [15], it is clearly
read differently than English! This aggregate view may be slightly misleading, however. If we focus on
a single program base – counting in the middle plot of the same figure – saccades are much less vertical.
This makes sense given that the counting programs are only 3 and 5 lines long. The English text was 4 lines
long, begging the question: would a multi-paragraph natural language task produce a saccade plot like the
left-most or right-most plot of Figure 22? We will leave this question for future work.

5.1.2 Code Element Fixations

Using the Pygments lexer, we divided code elements into five categories: identifiers, operators, literals,
keywords, and conditions. Identifiers are simply the names of functions and variables. Literals are lists,
strings, numbers, and boolean values like True and False. Operators were either mathematical (e.g., +,
*) and set operations like in. Conditions involved numerical comparisons, such as < and >. Across all
participants and trials, Figure 23 shows the total fixation durations for each code element category, both
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Figure 22: Saccade angles for all code fixations (left), from just the counting programs (center), and from fixations in a natural
language reading experiment (right). Distance from center is proportional to the longest saccade.

raw totals (left) and normalized by the number of characters in each category (right). We can see that, per
character, keywords receive the least amount of fixation time, followed by identifiers and literals. Operators
and conditions received the most normalized fixation time – a result we should expect given the prominence
of simple calculations and conditional (if) statements in our programs. Literals, such as lists and strings,
received most of the total fixation duration in individual programs (see Section 5.2), but their large textual
size puts them in the middle of the normalized plot. Our results here are mostly in line with other program
comprehension experiments, though every experiment categorizes code elements slightly differently (see
Discussion for details).

Figure 23: Total fixation durations by code element category. Left: raw totals by category. Right: totals divided by areas of
category elements across all programs.

5.1.3 Scanpath Comparisons

In an attempt to identify common strategies, we compared the scanpaths of participants viewing the
same program using the normalized Levenshtein (string-edit) distance [30]. Two kinds of scanpaths were

26



computed: (1) between whitespace-separated blocks of code, and (2) between individual lines of code. The
output box was included in both kinds of scanpaths, and repeated visits to the same area of interest were
removed. For each program, clusters of scanpaths with low edit distances (e.g., below 0.25) would represent
common ways of reading and evaluating the program.

We were surprised to find large differences between participant scanpaths. On average, we observed
a normalized edit distance of 0.52 for block/output scanpaths and 0.65 for for line/output scanpaths
(Figure 24). These values indicate that participant looking behaviors were highly individualized – i.e., a
given pair of scanpaths from the same program tended to differ more than 50%. At the level of individual
program versions, the mean and median edit distances were always greater than 0.25. The closest was
funcall space with a median of 0.26.

Figure 24: Normalized edit distances between participant scanpath pairs. Left: code block and output box scanpaths. Right: code
line and output box scanpaths.

There are two likely reasons for the large difference between participant scanpaths. First, our task
was fairly free-form – participants were not constrained to read or respond in any specific order. Second,
there were no time constraints on individual trials, producing scanpaths with variable lengths. The edit
distance metric we use is sensitive to both of these complications. Variations of the edit distance exist, with
different costs for insertions, deletions, replacements, and even transpositions (e.g., ba to ab). Methods
for normalizing scanpaths also exist, such as removing two character repeats (e.g., abab becomes ab) to
avoid capturing refixations and simply clipping all scanpaths to the same length. Lastly, entirely different
comparison algorithms can be used – e.g., ScanMatch [12], scanpath entropy [20]. Because of the large space
of possibilities here, we will leave more sophisticated scanpath clustering for future work.

5.2 By Program

In this section, we break results down by individual program base and version. We begin by examining
participant performance, graded by how closely their responses approximated the programs true printed
output. A perfect grade was given if there was a match, character for character. Allowing some room for error,
a correct grade was given to a response that matched the true output, sans some whitespace and formatting
characters (e.g., commas, brackets). Figure 25 shows the proportion of correct (green) and incorrect (red)
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responses for each program version. It’s immediately apparent that scope, counting, and between were
the most difficult for participants. Because there were only 29 participants in our experiment, however, a
statistical argument for performance differences between program versions is not feasible. Our larger study
with Mechanical Turk participants aims to answer these kinds of questions.

Figure 25: Correct (green)/incorrect (red) trial proportions and counts by program version.

5.2.1 between

The between programs tested the effects of pulled-out versus inline functionality (i.e., putting code into
functions versus repeating it). In both versions, two lists are filtered and printed, and then the common
elements in the original lists are printed. We saw several shared looking behaviors between both versions.
For example, participants tended to give the majority of their fixation duration to the x and y lists, and
slightly less time to the first comparison in the filtering operation.

The functions version contained two functions (between and common), corresponding to the filtering
and intersection operations performed on the two lists. Figure 26 shows where participants spent their
time when looking at the code. As we might expect, most of the time was spent looking at the two lists
(lines 15 and 19). Interestingly, we can see that slightly less time was spent on the second list (line 19). This
pattern recurs throughout many of the programs, suggesting that participants are faster at evaluating the
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second instance of the between function. While this might be expected for a function call, the same pattern is
observed in the inline version (Figure 29), where the code is duplicated.

Figure 26: Total fixation duration for between functions broken down by screen region, line, and token. Dark red regions have
the highest concentration of fixation time (all trials).

Inspecting the transition matrix for functions, we can observe some expected behavior. The highest
probability transitions from the output box are to lines 15-19 – where the two lists are located. Transitions to
the output box involve these lines, but also include the common function call on line 23. Notable transition
probabilities also occur between lines 15 and 19, something we would expect if participants were comparing
both lists to find the common elements. To see the actual process of evaluation, though, we need to move
beyond the aggregate transition matrix and focus on the dynamic behavior within single trials.

Using a timeline of fixations on each line of code (and the output box), we can observe distinct phases
of evaluation at the level of an individual trial. Figure 28 shows a trial timeline with five different sections
highlighted in blue from left to right, representing what we believe to be the participant (1) reading the
between function, (2) reading the common function, (3) filtering the first list, (4) filtering the second list, and (5)
finding the common elements between lists. Additional evidence comes from this participant’s intermediary
responses (highlighted in yellow and listed in Table 4). These responses line up nicely with our hypothesized
order of evaluation by coming at the ends of the last three sections.

The inline version did not contain any function definitions, and instead repeated code for the filtering
and intersection operations. Figure 29 shows the relative amount of time spent on each line of this version.
Like functions, less time is spent on the second instance of the filtering operation (lines 8-13), suggesting
that participants recognized the repeated pattern. Unlike functions, however, relatively little time was
spent on the intersection operation (lines 15-19) compared to the common function. Our larger study with
participants from Amazon’s Mechanical Turk found a slight, though significant, increase in correct responses
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Figure 27: Transition matrix for between functions (all participants). Probabilities below 0.1 are not annotated.

Figure 28: Timeline of fixations by line for a single between functions trial. Regions in blue correspond to expected steps in
evaluation. Yellow regions match response times from Table 4.
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time ms response
90689 [8,7,9]

127881 [8,7,9]•[1,0,8,1]
151920 [8,7,9]•[1,0,8,1]•[8,9,0]

Table 4: Intermediary responses for trial 9-88 (between functions). The • character represents newlines.

for inline versus functions.

Figure 29: Total fixation duration for between inline broken down by screen region, line, and token. Dark red regions have the
highest concentration of fixation time (all trials).

Based on the eye movement data summary here, it seems reasonable that the intersection operation in
inline was more recognizable than in functions. When inspecting response errors in the larger study,
however, we found that participants were no more likely to make a mistake on the final line of output ([8,
9, 0]) in either version. This output line – corresponding to the intersection operation – was five times
more likely to contain an error than the first output line, and over twice as likely than the second. A better
hypothesis might be that participants simply mistook the intersection operation for something else. Over
40% of participants who answered incorrectly (in both versions) provided an [8] as the last output line.
This mistake is consistent with assuming that the intersection operation occurs between x between and
y between rather than x and y. Perhaps, then, participants spent less time on the intersection operation
because they had (sometimes incorrect) assumptions about what it was “supposed” to do.

5.2.2 counting

The counting programs tested the effects of whitespace on the grouping of statements in a for loop. Both
versions of counting did the same thing: print “The count is i” and “Done counting” for i ∈ [1, 2, 3, 4]. While
the nospace version had the for loop declaration and the two print statements in the body on consecutive
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lines, the twospaces version added two blank lines between the first and second print statement. Because
Python is sensitive to indentation, this did not change the semantics of the program (i.e., both print

statements still belonged to the for loop).
The extra whitespace in the twospaces version clearly had an effect: only 36% of participants provided a

correct answer (as opposed to 80% correct in the nospace version). Proportionally, participants spent more
time on the last print statement in the nospace version (Figure 30), likely because they were reading it during
each evaluation of the loop body. This hypothesis is supported by inspecting the transition matrices for both
counting versions (Figure 31). Participants were almost twice as likely to fixate the “Done counting” line
after the first print statement on line 2 in the nospace version than in the twospaces version.

Figure 30: Total fixation durations by line for both versions of the counting program (all participants). Top: nospace, bottom:
twospaces.

Figure 31: Transition matrices for counting programs (all participants). Probabilities below 0.1 are not annotated.

We can even see a difference in the twospaces trials alone if we split them out by correct and incorrect
responses. The transition matrices reveal an interesting difference: participants that provided a correct
response were about twice as likely to fixate on the “Done counting” line after line 2 (Figure 32). Examples
of individual trials where this behavior was observed are shown in Figure 33. In the correct trial (top), the
participant reads all lines of the program before visiting the output box to start typing their response. The
participant in the incorrect trial, however, visits the output box after mainly fixating on line 2, and tends to
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fixate the “Done counting” print statement (line 5) in isolation.

Figure 32: Transition probabilities between lines and the output box for the twospaces counting program. Left: trials with
correct responses. Right: trials with incorrect responses.

The data from counting demonstrate that reading behavior and program interpretation are strongly
linked. We are not suggesting, however, that simply failing to spend sufficient time looking at the “Done
counting” line causes a participant to produce an incorrect response. Rather, this is likely a symptom of an
underlying error when spatially grouping the print statements. Would the same pattern of errors occur if the
entire program was embedded in a larger for loop or function? Further work is needed to determine which
spatial cues programmers use to group code elements, and how twospaces is violating the assumptions
behind those cues.

Figure 33: Fixation timelines for two twospaces trials. The top trial resulted in a correct response, while the bottom trial did not.
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5.2.3 funcall

The funcall programs each performed a compound calculation using a single, simple function: f (x) = x + 4.
The calculation, f (1)× f (0)× f (−1), either had no whitespace between terms (nospace version), a single
space between all tokens (space), or had each call to f (x) bound to a variable before completing the
calculation (vars). We expected more whitespace to facilitate faster trials and more correct responses,
especially in the vars versions where the calculation is broken out into multiple, named steps (i.e., x, y, z).

Trial time and response correctness across all versions was effectively the same, violating our performance
expectations. In terms of fixation time, the results are also largely the same across versions: the arguments
provided to f and the + operator are focal points (Figure 34). The return keyword on line 2 is fixated more
often than we would expect – keywords received the smallest fixation duration per area across all programs
in our experiment (Figure 23). Looking at the transition matrices for each version (Figure 35), we can see
that line 2 is a common destination. This is especially true from lines with f calls (line 4 in nospace and
space, lines 4-6 in vars). We suspect that the return keyword served as a beacon for visual jumps back to
the addition on line 2, thus increasing its share of relative fixation time.

Figure 34: Total fixation durations by line for all three versions of the funcall program (all participants). Top: nospace, middle:
space, bottom: vars.

The transition matrix for the vars version reveals steadily decreasing jump probabilities back to line 2 for
each call of f (lines 4-6). This suggests that participants needed to look up the definition of f less and less as
they performed the calculation. A good example of this behavior is shown in Figure 36. The participant
fixates lines 1 and 2 three times in the first five seconds, and twice in the next five seconds. By the end of
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Figure 35: Transition matrices for funcall programs (all participants). Probabilities below 0.1 are not annotated.
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the trial, only the output box is being fixated, presumably as the participant calculates the printed product.
Looking at the participant’s keystrokes partially confirms this hypothesis – an intermediary result of 12× 5
is typed first before being replaced by a 60 at about 26.8 seconds.

Figure 36: Fixation timeline for vars trial. The highlighted region (yellow) goes from the participant’s first keystroke to the last.

Let’s dig just a little deeper. Looking at the average fixation duration over a rolling window across the
same trial, we can see two spikes around 17 and 27 seconds (Figure 37). Given the rolling window delay,
these events likely correspond to the initial computation of the three additions (1 + 4, 0 + 4, −1 + 4), and the
later computation of the final product (5× 4× 3). Similar correspondence between average fixation duration
over a rolling window and mental computation was found in the initvar programs (Section 5.2.4).

Figure 37: Average fixation duration over a 1 second rolling window (1/2 second step).

5.2.4 initvar

The initvar programs each contained two accumulation loops: one performing a product, and the other
performing a summation. In the good version, both loops were intended to meet expectations; the product
loop had an initial value of 1, and the summation loop had an initial value of 0. The onebad version, however,
started the summation loop at 1 (an off-by-one error). The bothbad version contained the same error, and
also started the product loop at 0 (making the final product 0).

The fixation durations and transition matrices for all versions were fairly similar, except for one major
difference: participants in the bothbad version spent much less time on the list in the first for loop (Figure 38).
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This provides evidence for our suspicions that participants would “short-circuit” the product calculation
by noting that a = 0, and thus any product with a would also be 0. Performance-wise, this resulted in a
significant increase in response proportion – i.e., a higher proportion of bothbad trials were spent responding.

Figure 38: Total fixation durations by line for two versions of the initvar program (all participants). Top: bothbad, bottom:
onebad.

We expected the bothbad transition matrix (Figure 39) to have a large transition probability from lines
2 or 3 to the output box, representing a short-circuited calculation (and entry of a “0” by the participant).
We did not observe this in the aggregate across all bothbad trials, but the behavior is evident in some of the
individual trials. For example, Figure 40 shows the timeline of trial 59 (participant 6). The red line shows
when the participant first typed a “0” in the output box, which occurs immediately after looking at the first
loop. We can be confident this represents a short-circuited calculation because this participant’s keystrokes
(Table 5) contained intermediary results for the remaining calculation.

Another source of evidence for a short-circuited calculation in the same trial comes from the average
fixation duration over a rolling window (Figure 41). The largest spikes occur right around when the
participant has finished typing the operands for the final calculation (60-70 sec), and not when looking at the
first calculation. Interestingly, a small spike occurs around the 50 second mark – right when the participant
corrects an error in their response. Average fixation duration may indicate intermediary errors as well as
mental calculations.
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Figure 39: Transition matrix for good and bothbad trials. Probabilities below 0.1 are not annotated.

Figure 40: Fixation timeline for bothbad trial. The red line indicates when a “0” response was given.

time ms response

17848 0
19294 0•
40125 0•1
43821 0•1+
45245 0•1+1
46765 0•1+1+
50837 0•1+1+3
51853 0•1+1+2
52205 0•1+1+2+
54669 0•1+1+2+3
55182 0•1+1+2+3+
55645 0•1+1+2+3+4
64188 0•1+1+2+3+4
64332 0•1+1+2+3+4 =
64836 0•1+1+2+3+4 =
70900 0•1+1+2+3+4 = 1
71037 0•1+1+2+3+4 = 11
81000 0•11

Table 5: Time series of responses for trial 59, participant 6 (initvar bothbad). A • represents a new line.
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Figure 41: Average fixation duration over a 1 second rolling window (1/2 second step).

5.2.5 order

The order programs contained three functions, f (x), g(x), and h(x). f and g added 4 and doubled x
respectively, and h computed f (x) + g(x). In the main body, all three functions were called on x = 1 in
the same order: f , g, h. The order in which the three functions were defined was either in the called order
(inorder), or in a slightly different order (shuffled) – h, f , g.

We found that participants in the shuffled trials took slightly longer to provide responses, presumably
because there were ordering expectations for the definitions of f , g, and h. The visualizations of where
participants spent their time in both versions are very similar, with the exception that a bit more time was
spent in shuffled on the return keywords inside each function (Figure 42). Like the funcall programs, we
suspect that these code elements served as beacons for quickly locating the function bodies. The implicit
ordering of functions in the inorder version may have lessened the need for such beacons. This hypothesis
is not quantifiable, however, without further experimentation.

Surprisingly, we did not see differences between versions in the transition matrices, or in metrics related
to visual search efficiency, such as normalized scanpath length, fixation rate, spatial density, and average
saccade length. Given the observed difference in trial times in our larger study (inorder participants were
slightly faster), we expect that there exists some quantifiable method for distinguishing between participants’
eye movements in both versions. We may need more participants, however, to locate a distinguishing
feature.

Looking at the timelines for individual trials, similar behaviors can be easily noted (Figure 43). In the
inorder trial (top), we can see fixations move from lines 1-2 (definition of f ) to lines 4-5 (definition of g),
and finally to lines 7-8 (definition of h) with occasional jumps back to line 2 ( f ). Similarly, the shuffled trial
(bottom) starts on lines 4-5 ( f ), goes to lines 7-8 (g), and ends with lines 1-2 (h) plus the occasional jump to
line 4 ( f ). The shuffled ordering does not appear to heavily impact visual search or transitions to the output
box.
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Figure 42: Total fixation durations by line both versions of the order program (all participants). Top: inorder, bottom:
shuffled.
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Figure 43: Timeline of line and output box fixations for two order trials. Top: inorder, bottom: shuffled.
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5.2.6 overload

The overload programs tested the effects of operator overloading – i.e., having multiple meanings for the
same operator. Each program had three blocks of code, each with two variable assignments followed by an
operation with those two variables (and a printing of the result). The final block always assigned a string “5”
and string “3” to variables e and f, and then printed e + f. The + operator in Python is overloaded, and can
either be addition or string concatenation depending on the types of its operands. The preceding two code
blocks either had exclusively multiplications (multmixed), additions (plusmixed), or string concatenations
(strings).

We expected participants to be “surprised” more by the final + operation (string concatenation) in the
plusmixed version than the others due to being primed with the mathematical sense of the operator. We
saw the largest differences between plusmixed and strings: participants focused much more on lines 9-11
in plusmixed, specifically on the string values and + operator (Figure 44). The results for multmixed were
similar to plusmixed, though not quite as distinct from strings.

Figure 44: Total fixation durations by line for two versions of the overload program (all participants). Top: plusmixed, bottom:
strings.

It’s unclear whether participants were more “surprised” by the string numerals (“5” and “3”) or the +

operator. While the transition matrices for plusmixed and strings were not drastically different (Figure 45),
we did see a slightly higher probability of going from the output box to lines 9-11 in the plusmixed version
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(0.54 versus 0.25). This suggests that participants were more likely to go back and check the string concatena-
tion block of code after responding when it was proceeded by additions. A good example of this behavior is
shown in the timeline in Figure 46. After typing the final line of their response (“53”), as indicated by the
yellow region, the participant fixates the output box before returning to the final code block. Interestingly,
the participant also returns to line 7 (print c + d), perhaps to double-check that previous additions were
not actually string concatenations. It appears that some priming is going on for the + symbol, and that
having multiple senses of an operator in the same small program is enough to affect eye movements.

Figure 45: Transition matrices for overload programs (all participants). Probabilities below 0.1 are not annotated.

Figure 46: Fixation timeline for a plusmixed trial. The yellow region indicates when the participant was typing “53”.

5.2.7 partition

The partition programs each iterated through a list of numbers, and printed the number plus a “high” or
“low” designation on each line. Numbers less than 3 were low, and numbers greater than 3 were high (3 itself
was skipped). The balanced version iterated over [1, 2, 3, 4, 5], producing an equal number of low and high
numbers. In contrast, the unbalanced and unbalanced pivot versions iterated over [1, 2, 3, 4], printing two

43



low and only one high. The unbalanced pivot version used variable pivot = 3 instead of the constant 3 in
its if statements.

We expected participants to make fewer errors in the balanced version because of the symmetric low and
high values. No systematic difference between versions was observed, however. In fact, the most common
error was simply forgetting to print the number (i) alongside the low/high label. There were no major
differences between relative fixation durations either – participants in all three versions spent the majority of
their time on the list and two conditionals (Figure 47).

Figure 47: Total fixation durations by line for the unbalanced pivot version of partition. Other versions had similar results.

The transition matrices for all versions were also very similar, but contained an interesting pattern.
Figure 48 shows the transition matrix for the unbalanced pivot trials. Lines 2-4 form a looping core in the
matrix, with high probability transitions going to the next and previous lines. From this, we might expect
participants to snake their fixations up and down these lines as they evaluate the program. Indeed, this
behavior is observable in the fixation timelines – e.g., Figure 49.

This timeline also helps explain the transition probabilities coming out of line 1 (pivot = 3). The
highlighted portions correspond to the participant’s entry of each response line (1 low, 2 low, and 4 high).
We can see several quick jumps up to line 1, one before each entry of the first and second response lines.
Line 1 receives few visits, so the high probability transitions from it to lines 2 and 4 are likely due to (1) most
participants reading the program in line order, and (2) referencing the variable’s value while evaluating the
print statement on line 4. The latter behavior is referred to as tracing in Cant et. al’s cognitive model of
program comprehension [9] and, along with chunking, encompasses much of basic program comprehension.
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Figure 48: Transition matrix for all unbalanced pivot trials. Probabilities below 0.1 are not annotated.

Figure 49: Fixation timeline for an unbalanced pivot trial. The yellow regions correspond to the typing of the first, second, and
third response line.
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5.2.8 rectangle

The rectangle programs computed the area of two rectangles, represented either as a collection of four x/y
variables (basic), a Rectangle object (class), or a pair of (x, y) coordinates (tuples). All 29 participants
produced a correct response to the rectangle programs, and we did not find any significant difference in
performance metrics between versions in the present or larger study (with Mechanical Turk participants).

Despite the different forms of the rectangle programs, the eye-tracking visualizations reveal strong
similarities. In general, participants focused on the ordering of arguments (either to the area function
or the Rectangle class constructor), and on the numeric values for width and height (Figures 50, 51, 52).
Interestingly, less time was always spent on the second set of arguments/values, providing evidence for
short-term learning of the area operation. Similar behavior was observed for the filtering operation in the
between programs (Section 5.2.1).

Figure 50: Total fixation durations by line the basic version of rectangle.

The tuples version was distinguishable by participants’ use of their time on lines 2 and 3, especially
around the xy 2 operand. The extra time was likely used to verify the calculations of width and height,
which could easily have been wrong if the indices provided to xy 1 and xy 2 were reversed. The corre-
sponding lines in the basic and class versions were not fixated as much, suggesting that the calculation
verification was easier with flat variable names (e.g., x1, x2).

The transition matrix for tuples exemplifies the “block” structure observed in the matrices of all three
versions (Figure 53). Clusters of high transition probabilities closely follow the area function body and two
area computations. Two additional transition probabilities stand out here: (1) from line 9 to 11, and (2) from
the output box to line 11. These seem likely to correspond to different evaluation strategies – either reading
all the way through the program or responding to the first area computation before continuing. Inspecting
individual trial timelines, we can indeed find examples of both! Figure 54 shows two examples, with the
highlighted regions corresponding to the participants’ response periods. On top, we see a participant read
the entire program from top to bottom before responding. On the bottom, there are distinct reading/response
phases for both area computations. Note also that the area function (lines 1-4) is not fixated during the
second computation; another example of short-term learning.
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Figure 51: Total fixation durations by line the class version of rectangle.

Figure 52: Total fixation durations by line the tuples version of rectangle.
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Figure 53: Transition matrix for all tuples trials. Probabilities below 0.1 are not annotated.
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Figure 54: Fixation timelines for two tuples trials. The yellow regions correspond to response periods.

49



5.2.9 scope

The scope programs applied two functions to a variable named added: one function named add 1, and the
other named twice. Both of these functions produced no visible effects – they did not actually modify their
arguments or return a value. In the samename version, we reused the variable name added for each function’s
parameter name. For the diffname version, however, we used a different parameter name (num) for both
functions. Because the add 1 and twice functions had no effect, the main added variable retained its initial
value of 4 throughout the program (instead of being 22).

Participants made errors on both versions of the scope programs at about the same rate, and we did not
observe non-eye-tracking performance differences between versions (trial duration, response proportion,
etc.). In the diffname version, however, significantly more fixation time was spent on line 2 relative to the
rest of the program (see the bottom of Figure 55). In this version, a variable named added existed in the main
program body and inside the add 1 and twice functions. The extra time spent on line 2 suggests that having
the same variable name for global and local added variables had a measurable effect, though not one that
was visible by simply looking at responses and other non-eye-tracking performance metrics.

Figure 55: Total fixation durations by line for both versions of the scope program (all participants). Top: diffname, bottom:
samename.

We did not observe any significant differences between versions in the transition matrices, and only minor
differences existed in the transition matrices between correct and incorrect trials (Figure 56). Specifically, we
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note an increased probability of returning from the output box to line 8, as well as transitioning from line 2 to
line 1. The former may simply be an additional check by participants after responding, and the latter may be
evidence of recognition that the modified variable (added or num) is locally rather than globally scoped. The
true reasons for these differences, however, may be much more complicated. As we mentioned previously,
some participants asked the experimenter if functions in the Python language were “call by value” or “call
by reference” when evaluating this program. We did not expect such a simple-looking program to induce
deep language-related questions, and make our interpretation of the data so difficult!

Figure 56: Transition matrices for correct and incorrect trials in the scope programs. Probabilities below 0.1 are not annotated.

5.2.10 whitespace

The whitespace programs print the results of three simple linear calculations. In the zigzag version, the
code is laid out with one space between every mathematical operation, so that the line endings have a
typical “zig-zag” appearance. The linedup version, in contrast, aligns each block of code by its mathematical
operators, nicely lining up all identifiers. We expected there to be a speed difference between the two
versions, with participants being faster in the linedup version. When designing the experiment, most of our
pilot participants agreed that this version facilitated reading, but performance differences were not observed
in practice.

We did not find differences in eye movements between versions either. Time spent on each line was
approximately the same (Figure 57), and the average lengths of saccades as well as the spatial density
of fixations on code were statistically indistinguishable. The transition matrices were also quite similar
(Figure 58), leading us to conclude that lining up the text in this small program did not have an impact
on eye movements. Because both styles are commonly found in code, programmers may have no trouble
switching back and forth. Comparing one or both of these styles to a third, uncommon style may reveal
differences (e.g., breaking the line in unusual places).

As with our programs, we observed correlations between fixation duration and specific times in a trial
when we expected participants to be performing mental calculations. Figure 59 shows the fixation timeline
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Figure 57: Total fixation durations by line for both versions of the whitespace program (all participants). Top: linedup, bottom:
zigzag.

Figure 58: Transition matrices for both versions of whitespace. Probabilities below 0.1 are not annotated.
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for a single zigzag trial (top) and the participant’s average fixation duration over a rolling one second
window every half second (bottom). The six highlighted regions correspond to the typing of the six parts
of the response: 0, 1, 1, 6, 2, 11 (including spaces and new lines). Note that most of these regions overlap
with local spikes in fixation duration, and are also places where we might expect the participant to be
calculating. The y component calculations are relatively more difficult, and do indeed correspond to clear
spikes. The final x component response (for x end, however, also corresponds to a spike despite being
a simple addition. We hypothesize that the increase in fixation duration may be due to mental retrieval
of variable values (x base, x other) rather than calculation. A quantitative cognitive model of program
comprehension could predict the underlying source of the fixation duration spikes even though they may
produce the same observable phenomena.

Figure 59
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6 Discussion

Across 29 participants and 288 trials, we found programmers’ eye movements to be strongly associated with
the task at hand (output prediction), and highly informative about the relevant parts of each program. We saw
evidence for short-term learning, both with repeated function calls and repeated code patterns. Surprisingly,
we did not find large differences between the eye movements of more and experienced programmers. While
our larger study with Mechanical Turk did find instances where performance differed for more experienced
programmers, this did not show up in our eye-tracking analysis. Despite this, we did observe one case where
eye movements and task performance were strongly linked: the counting programs. Below, we provide a
high-level discussion of our results as they relate to expected task-oriented behavior by participants and our
three main research questions.

6.1 Task-Oriented Behavior

Participants’ eye movement data revealed strong task-specific signatures for some programs. While the data
from all programs were indicative of task-oriented behavior, the distributions of fixation duration in between,
initvar, and rectangle were especially insightful. In the between programs, participants spent less time
looking at the second instance of the between calculation in both versions. Similar behavior was observed
in scope and whitespace for repeated function calls and calculations, indicating short-term learning and
algorithm recognition by participants.

In the bothbad version of initvar, a decrease in fixation duration on lines associated with the first
calculation suggested that participants were short-circuiting the product after noticing the first term was
zero. The timeline for one bothbad trial in Figure 40 and the corresponding keystrokes in Table 5 provided
corroborating evidence, specifically an immediate response of “0” followed by an explicit calculation. On
the flip side in bothbad, one trial’s fixation timeline, average rolling fixation duration, and sequence of
keystrokes signaled the participant’s mental calculation (Figures 15 and 17). We found a number of cases
where spikes in the average rolling fixation duration correlated with times when the participant was expected
to be calculating (i.e., between looking at the calculation line and responding).

Fixations in all three versions of rectangle were heavily focused on function arguments, either to the
Rectangle constructor or the area function. Because all participants responded correctly to this program,
we considered the possibility that little to no verification of the program was done – i.e., the area calculation
was simply assumed to be correct. The eye movement data tells a different story. Both the arguments passed
to area or Rectangle and the arguments of the function/class definition were focused on. In the tuples

version, focus shifted to the extraction of coordinate components for the rectangle’s width and height, again
indicating that participants were intent on verifying the program’s behavior. The transition matrices from
rectangle also hinted at multiple strategies that participants were using to evaluate the program. Further
investigation revealed trials that did precisely this (Figure 54), demonstrating the power of high-level,
aggregate eye movement statistics.

6.2 Research Questions

Next, we review our three research questions in light of the detailed results in the previous section.
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R1. How does the eye movement data from our experiment compare to other eye-tracking program
comprehension experiments?

Based on previous program comprehension experiments with eye-tracking, we had specific expectations
for our low-level eye movement metrics. Average fixation durations in previous experiments were higher
than ours (300-400 ms versus 273 ms), and were also correlated with the participant’s programming experi-
ence. We did not find programming or Python experience to be even moderately correlated with any of our
eye-tracking metrics (both low and high level). We attribute these differences to the uniqueness of our task
and the relative simplicity of our programs. Other experiments have had participants debug more complex
code, such as binary search algorithms and prime number generators. In contrast, one of our most “complex”
programs, between, featured list filtering and intersection. Such simple programs may not invoke the same
behaviors observed in other experiments, especially in more experienced programmers.

Although our fixation metrics differed from other experiments, the distributions of fixation duration
across areas of interest produced results more in line with expectations. Keywords, for example, received the
least amount of focus, while more complex expressions with conditions and operators received the most.
A perfect comparison between experiments is not possible, however, due to differences in how some code
elements are categorized. We consider Python’s True and False to be literal values like numbers and strings,
but they are categorized as keywords in at least one other Java-based study [8]. Similar problems exist when
comparing code complexity metrics like Halstead volume [17] between programming languages. Precisely
defining which code elements are “operators”, “operands”, or neither can be surprisingly difficult – e.g., is
the semi-colon in Java an end-of-statement operator?

R2. Can aggregate eye movement metrics and summary statistics be predicted from textual/syntactic
features of code?

Across all programs and participants, we found that line-based reading behavior could be moderately
predicted from a few simple textual features. The total amount of fixation duration on a line, for example,
was decently predicted (r2 = 0.54) from just the length of the line and its proportion of whitespace characters.
Similarly, the time of the first fixation on a line (divided by the total trial duration) could be predicted fairly
well (r2 = 0.57) from the line number alone. Surprisingly, the category of a line – e.g., function call, if
statement, for loop – did not significantly improved predictions. At the level of individual code elements,
however, the category was useful in predicting total fixation duration. A simple linear model with the
categories keyword, list, identifier, operator, string, integer, and tuple achieved an r2 value of 0.383.
When the line number of the code element was included, model performance increased to r2 = 0.576. Thus,
it appears that the category of a code element, and not the entire line, is a better predictor of fixation duration,
though line number still plays a significant role.

Several patterns emerged from the AOI transition matrices for individual programs. High probability
transitions tended to be clustered around whitespace-separated blocks of code, with transitions up and
down the block. The matrix in Figure 53 for rectangle tuples is an especially clean example of this
pattern. We expected the highest probability transitions from code to the output box to come from print

statements. While this was simply true for some programs, such as funcall (Figure 35), the results were
more complicated for most others. The transition matrices for initvar shown in Figure 39, for example,
require additional explanation. In the good version (left), transitions to the output box tend to come from the
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final print statement (0.33 probability). The sum of probabilities from lines 2-4 to the output box, however,
accounts for just as much. Transitions from the output box often went to lists, such as those on lines 15 and
19 in between functions (Figure 27). This makes sense, given that participants were supposed to filter the
lists and type their responses. In fact, we found a moderate correlation (r = 0.30, p < 0.001) between the
transition probability from the output box for a given line and the total fixation duration on that line. If
we interpret fixation duration as a measure of line importance, this says that participants tend to return to
important lines after providing partial responses (which almost always co-occurred with fixating the output
box).

R3. Do differences between versions of the same program, or demographics/performance of the
participant, influence eye movements?

We did not observe strong differences in low-level eye movement metrics or high-level statistics between
versions for most of our programs. Specifically, the two or three versions of between, funcall, order,
partition, scope, and whitespace were very similar in terms of fixation duration distribution and AOI
transition probabilities. There were not significant performance differences between participants interpreting
different versions either in this study (though there were in our larger study).

The different versions of counting, initvar, overload, and rectangle, however, were distinguishable
by eye movement metrics and statistics. For counting, we observed a distinct difference between the
AOI transition matrices of correct and incorrect trials in twospaces version. Participants who gave correct
responses tended to read all lines of the program before responding, while the others waited to read the
final line. As mentioned above, the first calculation in the bothbad version of initvar received less focus,
presumably because participants recognized a shortcut in the calculation not present in the other two
versions. In the plusmixed and multmixed versions of overload, the final “5” + “3” operation received more
time than in the strings version where all previous + operations were also string concatenations. Finally,
the tuples version of rectangle demonstrated a unique allocation of fixation duration on the calculation of
the rectangle’s width and height – a point where correct tuple indexing was critical.

Surprisingly, we did not find a strong or even moderate correlation between a participant’s programming
experience, Python experience, or response correctness and any of our low-level eye movement metrics.
Programming experience was a statistically significant predictor in a simple linear model predicting average
fixation duration. However, the effect size (r2) was extremely small (< 0.1), so we do not have much
confidence in its generalizability to other groups of programmers. As we discussed earlier for research
question R1, our unique task and simple programs may account for these results. Other performance metrics,
such as trial duration, were trivially correlated with number of fixations in a trial and total scanpath length
– longer trials necessarily mean more fixations and saccades. Other eye movement metrics, like average
fixation duration, fixation rate, and average saccade length were not correlated with any performance metric
or demographic value.

6.3 Scanpath Comparison

We had hoped to use the Levenshtein (string-edit) distance as a means of comparing participant scanpaths
on the same program. This proved more difficult than expected, as individual scanpaths were quite different,
even at multiple levels of granularity. While scanpaths at the code element level (e.g., keywords, identifiers)
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will be obviously different and quite noisy, we were surprised to find similar obstacles at the line and
whitespace-separated block level. On average, we found differences of over 50% between line and block
scanpaths (over 60% for line). These results suggest that alternative techniques may be necessary for
meaningful comparisons of programmer scanpaths, even for very simple programs. For example, Cristino et.
al have developed a technique based on the Needleman-Wunsch algorithm used to compare DNA sequences
in bioinformatics [12]. Hayes et. al have also created a method for converting scanpaths to a type of transition
matrix that retains temporal information (called the scanpath successor representation) [19]. These new
techniques may provide additional insight, but they are beyond the scope of this work.

7 Conclusion

Eye movements are a rich data source, and our analysis has shown just how much information can be
extracted from a mere 29 participants. Over the course of 288 trials, our participants predicted the output
of 25 total programs (10 programs each). Low-level eye movement metrics, such as fixation duration and
saccade length, did not correlate with task performance or programming experience. Fixation duration
did serve as an excellent proxy for code line importance, with the task-relevant lines of a program often
receiving the most aggregate focus. In line with previous experiments, we found that code elements like
keywords and identifiers received the least amount of focus, while more complex statements involving
conditional/boolean expressions received more.

High-level eye movement metrics and plots provided the most insight into our programmers’ cognitive
processes. Area of interest (AOI) transition matrices revealed how often participants transitioned between
code lines and the output box. In several cases, these transition probabilities provided hints at the kinds
of strategies being used to evaluate the programs. In the counting programs, for example, correct and
incorrect responses to the twospaces version had distinct transition matrices, with the latter having a smaller
probability of reading the entire program before starting to respond. The transition matrix for rectangle
tuples had transitions corresponding to two different strategies (single response, multi-response), and we
found trials clearly demonstrating each. Lastly, we combined high and low-level metrics using a rolling time
window across individual trials. When looking at combined changes in mean fixation duration, recently
fixated lines, and response keystrokes, we found that spikes in fixation duration often co-occurred with
times we would expect the participant to perform a mental calculation.

Eye-tracking has recently gained popularity in the program comprehension literature, augmenting or
replacing traditional methodologies like think-aloud. Metrics and plots derived from eye movement data
can be used to gain invaluable insight into a programmer’s cognitive processes. This data could also be
used to develop a cognitive model of program comprehension, a step towards the semi-automated analysis
of program language design. We plan to use the data collected in this experiment to create a functioning
version of Cant et. al’s Cognitive Complexity Metric [9]. By incorporating existing components of a cognitive
architecture – a computational model of human cognitive – we will build on years of modeling research in
human memory and perceptual/motor systems.
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7.1 Future Work

Aside from developing a cognitive model, there are many other interesting avenues for future work. An
obvious extension to our experimental methodology is to include additional programming languages. Java
is used in a number of other studies, and so is a likely candidate. More complex programs may elicit
differences between more and less experienced programmers, but may require introducing the skeleton of a
development environment. A multi-file program, for example, would require additional GUI elements like
tabs or a file explorer. Human-computer interface studies on integrated development environments (IDEs)
exist (e.g., [22]), and it would be interesting to add eye-tracking to the mix.

We used rolling metrics to correlate spikes in fixation duration with moments where we expected
participants to be performing some kind of mental calculation or memory retrieval. Many other eye
movement metrics, such as spatial density and saccade length, could be analyzed in a similar manner.
Additionally, different window sizes focus on different timescales, providing yet another analysis parameter
to vary.

Finally, our comparison of scanpaths was stunted by the brittle nature of the Levenshtein distance. More
robust, genomic-inspired methods, like ScanMatch [12] are in our sights for future work. A more radical
approach would involve starting at our AOI mapping stage, where fixations are assigned to specific AOIs.
Rather than picking a single AOI, the areas of overlap between a circle surrounding the fixation point and
proximate AOIs could produce multiple possible scanpaths. Scanpath comparisons would then be between
multi-dimensional spaces, rather than one dimensional series, of AOIs.
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A Appendix - Programs and Output

A.1 between

A.1.1 between - functions

1 def between(numbers, low, high):

2 winners = []

3 for num in numbers:

4 if (low < num) and (num < high):

5 winners.append(num)

6 return winners

7

8 def common(list1, list2):

9 winners = []

10 for item1 in list1:

11 if item1 in list2:

12 winners.append(item1)

13 return winners

14

15 x = [2, 8, 7, 9, -5, 0, 2]

16 x_btwn = between(x, 2, 10)

17 print x_btwn

18

19 y = [1, -3, 10, 0, 8, 9, 1]

20 y_btwn = between(y, -2, 9)

21 print y_btwn

22

23 xy_common = common(x, y)

24 print xy_common

1 [8, 7, 9]

2 [1, 0, 8, 1]

3 [8, 9, 0]
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A.1.2 between - inline

1 x = [2, 8, 7, 9, -5, 0, 2]

2 x_between = []

3 for x_i in x:

4 if (2 < x_i) and (x_i < 10):

5 x_between.append(x_i)

6 print x_between

7

8 y = [1, -3, 10, 0, 8, 9, 1]

9 y_between = []

10 for y_i in y:

11 if (-2 < y_i) and (y_i < 9):

12 y_between.append(y_i)

13 print y_between

14

15 xy_common = []

16 for x_i in x:

17 if x_i in y:

18 xy_common.append(x_i)

19 print xy_common

1 [8, 7, 9]

2 [1, 0, 8, 1]

3 [8, 9, 0]

A.2 counting

A.2.1 counting - nospace

1 for i in [1, 2, 3, 4]:

2 print "The count is", i

3 print "Done counting"

1 The count is 1

2 Done counting

3 The count is 2

4 Done counting

5 The count is 3

6 Done counting

7 The count is 4

8 Done counting

60



A.2.2 counting - twospaces

1 for i in [1, 2, 3, 4]:

2 print "The count is", i

3

4

5 print "Done counting"

1 The count is 1

2 Done counting

3 The count is 2

4 Done counting

5 The count is 3

6 Done counting

7 The count is 4

8 Done counting

A.3 funcall

A.3.1 funcall - nospace

1 def f(x):

2 return x + 4

3

4 print f(1)*f(0)*f(-1)

1 60

A.3.2 funcall - space

1 def f(x):

2 return x + 4

3

4 print f(1) * f(0) * f(-1)

1 60

A.3.3 funcall - vars

1 def f(x):

2 return x + 4

3

4 x = f(1)

5 y = f(0)

6 z = f(-1)

7 print x * y * z

1 60
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A.4 initvar

A.4.1 initvar - bothbad

1 a = 0

2 for i in [1, 2, 3, 4]:

3 a = a * i

4 print a

5

6 b = 1

7 for i in [1, 2, 3, 4]:

8 b = b + i

9 print b

1 0

2 11

A.4.2 initvar - good

1 a = 1

2 for i in [1, 2, 3, 4]:

3 a = a * i

4 print a

5

6 b = 0

7 for i in [1, 2, 3, 4]:

8 b = b + i

9 print b

1 24

2 10

A.4.3 initvar - onebad

1 a = 1

2 for i in [1, 2, 3, 4]:

3 a = a * i

4 print a

5

6 b = 1

7 for i in [1, 2, 3, 4]:

8 b = b + i

9 print b

1 24

2 11

62



A.5 order

A.5.1 order - inorder

1 def f(x):

2 return x + 4

3

4 def g(x):

5 return x * 2

6

7 def h(x):

8 return f(x) + g(x)

9

10 x = 1

11 a = f(x)

12 b = g(x)

13 c = h(x)

14 print a, b, c

1 5 2 7

A.5.2 order - shuffled

1 def h(x):

2 return f(x) + g(x)

3

4 def f(x):

5 return x + 4

6

7 def g(x):

8 return x * 2

9

10 x = 1

11 a = f(x)

12 b = g(x)

13 c = h(x)

14 print a, b, c

1 5 2 7
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A.6 overload

A.6.1 overload - multmixed

1 a = 4

2 b = 3

3 print a * b

4

5 c = 7

6 d = 2

7 print c * d

8

9 e = "5"

10 f = "3"

11 print e + f

1 12

2 14

3 53

A.6.2 overload - plusmixed

1 a = 4

2 b = 3

3 print a + b

4

5 c = 7

6 d = 2

7 print c + d

8

9 e = "5"

10 f = "3"

11 print e + f

1 7

2 9

3 53

A.6.3 overload - strings

1 a = "hi"

2 b = "bye"

3 print a + b

4

5 c = "street"

6 d = "penny"

7 print c + d

8

9 e = "5"

10 f = "3"

11 print e + f

1 hibye

2 streetpenny

3 53
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A.7 partition

A.7.1 partition - balanced

1 for i in [1, 2, 3, 4, 5]:

2 if (i < 3):

3 print i, "low"

4 if (i > 3):

5 print i, "high"

1 1 low

2 2 low

3 4 high

4 5 high

A.7.2 partition - unbalanced

1 for i in [1, 2, 3, 4]:

2 if (i < 3):

3 print i, "low"

4 if (i > 3):

5 print i, "high"

1 1 low

2 2 low

3 4 high

A.7.3 partition - unbalanced pivot

1 pivot = 3

2 for i in [1, 2, 3, 4]:

3 if (i < pivot):

4 print i, "low"

5 if (i > pivot):

6 print i, "high"

1 1 low

2 2 low

3 4 high
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A.8 rectangle

A.8.1 rectangle - basic

1 def area(x1, y1, x2, y2):

2 width = x2 - x1

3 height = y2 - y1

4 return width * height

5

6 r1_x1 = 0

7 r1_y1 = 0

8 r1_x2 = 10

9 r1_y2 = 10

10 r1_area = area(r1_x1, r1_y1, r1_x2, r1_y2)

11 print r1_area

12

13 r2_x1 = 5

14 r2_y1 = 5

15 r2_x2 = 10

16 r2_y2 = 10

17 r2_area = area(r2_x1, r2_y1, r2_x2, r2_y2)

18 print r2_area

1 100

2 25
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A.8.2 rectangle - class

1 class Rectangle:

2 def __init__(self, x1, y1, x2, y2):

3 self.x1 = x1

4 self.y1 = y1

5 self.x2 = x2

6 self.y2 = y2

7

8 def width(self):

9 return self.x2 - self.x1

10

11 def height(self):

12 return self.y2 - self.y1

13

14 def area(self):

15 return self.width() * self.height()

16

17 rect1 = Rectangle(0, 0, 10, 10)

18 print rect1.area()

19

20 rect2 = Rectangle(5, 5, 10, 10)

21 print rect2.area()

1 100

2 25

A.8.3 rectangle - tuples

1 def area(xy_1, xy_2):

2 width = xy_2[0] - xy_1[0]

3 height = xy_2[1] - xy_1[1]

4 return width * height

5

6 r1_xy_1 = (0, 0)

7 r1_xy_2 = (10, 10)

8 r1_area = area(r1_xy_1, r1_xy_2)

9 print r1_area

10

11 r2_xy_1 = (5, 5)

12 r2_xy_2 = (10, 10)

13 r2_area = area(r2_xy_1, r2_xy_2)

14 print r2_area

1 100

2 25
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A.9 scope

A.9.1 scope - diffname

1 def add_1(num):

2 num = num + 1

3

4 def twice(num):

5 num = num * 2

6

7 added = 4

8 add_1(added)

9 twice(added)

10 add_1(added)

11 twice(added)

12 print added

1 4

A.9.2 scope - samename

1 def add_1(added):

2 added = added + 1

3

4 def twice(added):

5 added = added * 2

6

7 added = 4

8 add_1(added)

9 twice(added)

10 add_1(added)

11 twice(added)

12 print added

1 4
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A.10 whitespace

A.10.1 whitespace - linedup

1 intercept = 1

2 slope = 5

3

4 x_base = 0

5 x_other = x_base + 1

6 x_end = x_base + x_other + 1

7

8 y_base = slope * x_base + intercept

9 y_other = slope * x_other + intercept

10 y_end = slope * x_end + intercept

11

12 print x_base, y_base

13 print x_other, y_other

14 print x_end, y_end

1 0 1

2 1 6

3 2 11

A.10.2 whitespace - zigzag

1 intercept = 1

2 slope = 5

3

4 x_base = 0

5 x_other = x_base + 1

6 x_end = x_base + x_other + 1

7

8 y_base = slope * x_base + intercept

9 y_other = slope * x_other + intercept

10 y_end = slope * x_end + intercept

11

12 print x_base, y_base

13 print x_other, y_other

14 print x_end, y_end

1 0 1

2 1 6

3 2 11
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